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Adaptive dynamics

Adaptive dynamics: Darwinian evolution

with focus on

• Heredity: transmission of phenotypes

⇝ simplified (asexual)

• Mutation: modification of phenotypes

• Selection: consequence of ecological interactions

⇝ focus on the
interplay between ecology and evolution

Main question: characterize long-term evolution under assumptions of

• large populations

• small mutations

• rare mutations

Goal of this talk: build macroscopic models from several combinations
of these 3 hypotheses satisfying key biological features.

Metz et al. 1996; Dieckmann and Law 1996, Geritz et al. 1997, 1998



Introduction Individual-based model First K → +∞, then σ → 0 Rare mutations Less rare mutations Small mutations Conclusion

Adaptive dynamics

Adaptive dynamics: Darwinian evolution with focus on

• Heredity: transmission of phenotypes ⇝ simplified (asexual)

• Mutation: modification of phenotypes

• Selection: consequence of ecological interactions ⇝ focus on the
interplay between ecology and evolution

Main question: characterize long-term evolution under assumptions of

• large populations

• small mutations

• rare mutations

Goal of this talk: build macroscopic models from several combinations
of these 3 hypotheses satisfying key biological features.

Metz et al. 1996; Dieckmann and Law 1996, Geritz et al. 1997, 1998



Introduction Individual-based model First K → +∞, then σ → 0 Rare mutations Less rare mutations Small mutations Conclusion

An individual-based (toy) model

Asexual birth and death process with logistic competition and
mutation

• Evolution of a quantitative phenotypic trait

• Trait space X = R
• A population composed of N (t) individuals with traits

x1, . . . , xN (t) ∈ R is represented by

νt =

N (t)∑
i=1

δxi

• Measure-value pure jump Markov process
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Population dynamics

For an individual with trait x ∈ R in the population νt =

N (t)∑
i=1

δxi :

• clonal reproduction at rate b(x )

• reproduction with mutation at rate p(x ), mutant trait x + z
with z ∼ N (0, 1)

• death with rate d(x ) +

N (t)∑
i=1

c(x , xi) = d(x ) +

∫
R
c(x , y)νt (dy)

3 scaling parameters:

• large population: K → +∞
• rare mutations: µ → 0

• small mutations: σ → 0

Metz et al. 1996; Bolker and Pacala 1997, DeAngelis and Mooij 2005
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Population dynamics

For an individual with trait x ∈ R in the population νKt =
1

K

N (t)∑
i=1

δxi :

• clonal reproduction at rate b(x )

• reproduction with mutation at rate µp(x ), mutant trait x + z
with z ∼ N (0, σ2)

• death with rate d(x ) +
1

K

N (t)∑
i=1

c(x , xi) = d(x ) +

∫
R
c(x , y)νKt (dy)

3 scaling parameters:

• large population: K → +∞
• rare mutations: µ → 0

• small mutations: σ → 0

Metz et al. 1996; Bolker and Pacala 1997, DeAngelis and Mooij 2005
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The cube of scaling parameters
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Simulations: evolutionary arms race with asymetric
competition

Trait space X = [0, 4], d(x ) ≡ 0,

mutation law N (0, σ2) (conditioned on x + h ∈ X )

b(x ) = 4− x , p(x ) = 1, c(x , y) = c(x − y) with

-
u

6

c(u)
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..........
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.
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Kisdi, JTB 1999; C., Ferrière, Méléard, TPB 2006
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Simulation

K = 100, µ = 0.03, σ = 0.1
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Limit K → +∞ alone

Theorem

Under general assumptions on the parameters and the initial
condition, assuming µ and σ constant, νK converges in
D(R+,MF (R)) as K → +∞ to the unique (weak, measure) solution of

∂tu(t , x ) =

(
b(x )− d(x )−

∫
R
c(x , y)u(t , y)dy

)
u(t , x )

+

∫
R

1

σ
G

(
x − y

σ

)
µp(y)u(t , y)dy .

Fournier, Méléard, AAP 2004, C., Ferrière, Méléard, TPB 2006
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Limit K → +∞
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Simulation

K = 100000, µ = 0.03, σ = 0.1
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Small mutations and long time: concentration limit

∂tuσ(t , x ) =
1

σ

(
b(x )− d(x )−

∫
R
c(x , y)uσ(t , y)dy

+µ

∫
R
p(x − σh)G(h)dh

)
uσ(t , x )

+
µ

σ

∫
R
p(x − σh) (uσ(t , x − σh)− uσ(t , x ))G(h)dh.

Hopf-Cole transformation:

uσ(t , x ) = exp
(βσ(t , x )

σ

)
, or βσ(t , x ) = σ ln uσ(t , x )

gives

∂tβσ(t , x ) = b(x )− d(x )−
∫
R
c(x , y)uσ(t , y)dy + µ

∫
R
p(x − σh)G(h)dh

+ µ

∫
R
p(x − σh)

[
exp

(
βσ(t , x − σh)− βσ(t , x )

σ

)
− 1

]
G(h)dh.
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Hamilton-Jacobi equation

We expect βσ → β solution to the Hamilton-Jacobi equation

∂tβ(t , x ) =b(x )− d(x )−
∫
R
c(x , y)µt(dy) + µp(x )

+ µp(x )

∫
R

(
e−∂xβ(t,x)h − 1

)
G(h)dh,

where µt is the limit of uσ(t , ·).
• b − d > 0 ⇝ non-explosion and non-extinction of the population:

lim sup
σ→0

max
x

βσ(t , x ) = 0.

• How to characterize µt? difficult problem in general!
• µt only charges {β(t , ·) = 0}.
• if {β(t , ·) = 0} = {x̄(t)}, then ∂tβ(t , x̄(t)) = 0 gives

µt =
b(x̄(t)) + µp(x̄(t))− d(x̄(t))

c(x̄(t), x̄(t))
δx̄(t)

Diekmann et al. 2005; Barles, Perthame 2008;

Mirrahimi et al. 2009; Mirrahimi, Roquejoffre, 2018
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Hamilton-Jacobi limit
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Simulation

K = 100000, µ = 0.3, σ = 0.03
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Simulation

K = 100000, µ = 0.3, σ = 0.01
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Simulation

K = 100000, µ = 0.3, σ = 0.003
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The tail problem

Example of dynamics of the function β(t , x ):

• The dynamics is strongly influenced by exponentially small initial
population densities in favorable regions far away from the initial
population

• Positive population densities everywhere ⇝ no local extinction

• Evolutionary time-scale is too fast (t/σ)

Perthame and Gauduchon 2010, Mirrahimi et al. 2012
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(Very) rare mutations

The selection process has sufficient time between two mutations to
eliminate disadvantaged traits (time scale separation):

• succession of phases of mutant invasion, and competition between
traits

• the outcome of competition is given by the deterministic
population dynamics obtained above

Time scales:

• of individual mutations: 1
µ

• of mutations at the populations level: 1
Kµ

• of competition: 1

• of mutant invasion: logK (time for a super-critical branching
process to reach K )

Metz et al. 1996, C. SPA 2006
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(Very) rare mutations: K → +∞ and µ → 0

Theorem

Assume that νK
0 → n0 δx with n0 > 0. If

∀C > 0, logK ≪ 1

Kµ
≪ exp(CK ),

then (νK
t/Kµ, t ≥ 0) converges for f.d.d. to a pure jump Markov process

(Λt , t ≥ 0) with values in the set of positive measures on R with finite
support.

Under assumptions preventing coexistence of several traits,

Λt = n̄(Xt) δXt ,

where n̄(x) = b(x)−d(x)
c(x ,x)

and (Xt)t≥0 is Markov with generator

Lφ(x) =

∫
R
(φ(x + σh)− φ(x))p(x)n̄(x)

[f (x + σh, x)]+

b(x + σh)
G(h)dh,

where f (y , x) = b(y)− d(y)− c(y , x)n̄(x) is the fitness function.

C. SPA 2006; C., Méléard, PTRF 2011; C., Jabin, Méléard JMPA 2014
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Simulation: trait substitution sequence (TSS)

K = 1000, µ = 0.00001, σ = 0.1
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Convergence to the TSS
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Biological criticism: too rare mutations

The scaling limit leading to the TSS has been also criticized by
biologists:

• strictly monomorphic populations are unrealistic

• time scale of evolution is too long ( t
Kµ )

• mutations are too rare

Intermediate approach: less rare mutations

• allowing to take into account non-extinct but negligible
populations may have a strong influence on long term evolution

• allowing for local extinction

Waxman, Gavrilets, JEB 2005
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A discretized model

• Discretized state space X = {iδ, 0 ≤ i ≤ 1/δ} with step δ

• Population state (NK
0 (t), . . . ,NK

1/δ(t))

• Symmetric mutations to the closest trait

We define

βK
i (t) =

log(1 +NK
i (t logK ))

logK
, i.e. NK

i (t logK ) = K βK
i (t) − 1.

• βK
i (t) = 0 : the population with trait iδ is extinct

• βK
i (t) ∈ (0, 1) : the population with trait iδ is non-extinct but

negligible w.r.t. the dominant population (of the order of K ).
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A scaling with (less) rare mutations

Define the relative fitness function S (i ; ℓ) = r(iδ)− r(ℓδ) with
r(x ) = b(x )− d(x ).

Theorem

Assume µ = K−α with α ∈ (0, 1) and that NK
i (0) = ⌊K βi (0)⌋ with

maxi βi(0) = βi0(0) = 1 for a unique i0.
Then (βK

i )0≤i≤1/δ converges in probability in L∞
loc(R∗

+) to a piecewise
affine function (βi)0≤i≤1/δ such that

β̇ℓ(t)=


0 if ℓ=ℓ∗(t),

max{S(i ; ℓ∗(t)), i :βj (t) = βℓ(t) + |ℓ− j |α, ∀ℓ ∧ i ≤ j ≤ ℓ ∨ i} ifβℓ(t)>0,

max{S(i ; ℓ∗(t)), i ̸= ℓ :βj (t)=βℓ(t)+|ℓ− j |α, ∀ℓ ∧ i≤ j ≤ℓ ∨ i} ifβℓ(t)=0,

where ℓ∗(t) ∈ {0, . . . , 1/δ} is such that ℓ∗(0) = i0 and ℓ∗(t) = j for all
j and t such that j ̸= ℓ∗(t−) and βj (t−) = 1.

Durrett, Mayberry, 2011; Bovier, Coquille, Smadi, 2019; C., Méléard, Tran, 2021
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Another scaling limit
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Intuition

Follow small populations of size K β on the timescale logK .

Lemma (without mutation)

Consider a linear birth-death (branching) process (Zt)t≥0 with birth
rate b and death rate d, such that Z0 = ⌊K β⌋. Then, in probability in
L∞([0,T ]),(

log(1 + ZK
s logK )

logK
, s ≥ 0

)
−−−−−→
K→+∞

(
(β + s(b − d)) ∨ 0, s ≥ 0

)
.

Lemma (with mutation)

Consider the same process as above with additional immigration at
rate K ceas , for a, c ∈ R. Then, in probability in L∞([0,T ]),(

log(1 + ZK
s logK )

logK
, s ≥ 0

)
−−−−−→
K→+∞

(
(β + s(b − d)) ∨ (c + as), s ≥ 0

)
.
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Example of dynamics of βℓ(t)
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Simulation with α = 0.5

K = 1000, µ = 0.03 ∝ 1/
√
K , δ = 0.1
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Simulation with α = 0.5

K = 100 000, µ = 0.003 ∝ 1/
√
K , δ = 0.1
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Perspectives: small mutations and vanishing grid mesh

Complex limit dynamic: the Hamilton-Jacobi approach suggests that
a scaling with small mutations instead of rare mutations should give
simpler dynamics ⇝ vanishing grid mesh

Only preliminary results: assume

• no competition: c(x , y) ≡ 0

• no extinction: supercritical case and large initial population

• trait space [0, 1] with periodic boundary conditions

• grid mesh δK , such that hK = δK logK → 0

• grid XK = {iδK : 0 ≤ i ≤ 1/δK − 1}
• an individual with trait ℓδK gives birth to a mutant individual
with trait j δK at rate p(ℓδK )hKG(hK (j − ℓ))

• ⇝ total mutation rate of the order of p(ℓδK )
• ⇝ mutation size of the order of 1/ logK
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Convergence theorem

For all x , t , let iK be the integer such that x ∈ [iK δK , (iK + 1)δK ) and
define the affine interpolation function

β̃K (t , x ) = βK
iK (t)

(
1− x

δK
+ iK

)
+ βK

iK+1(t)

(
x

δK
− iK

)
.

Theorem

Assume β̃K (0, ·) is uniformly Lipschitz and converges in L∞ to β0.

Then β̃K converges to the unique viscosity solution of the
Hamilton-Jacobi equation

∂tβ(t , x ) = b(x ) + µp(x )− d(x ) + µp(x )

∫
R

(
e−z ·∇β(t,x) − 1

)
G(z )dz

such that β(0, x ) = β0(x ), in D(R+,C ([⊬,⊮])).

C., Méléard, Mirrahimi, Tran, 2022+
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A fourth scaling limit
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Simulation

K = 1000, µ = 1, σ = 0.067, δK = 0.036
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Simulation

K = 100 000, µ = 1, σ = 0.04, δK = 0.0128
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Conclusion

• Great variety of dynamics starting from the same
individual-based model

• All are concentration limits, with very different evolutionary
time-scales and macroscopic behaviors

• Parameter scalings motivated by discussions in the biological
literature and interactions with biologists

• Mathematics can help to shed light on the biological debate

• Also great richness of mathematical tools

• And this is not the end of the story...
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Filling in the cube...

Fournier, Méléard, AAP 2004

Diekmann et al. TPB 2005; Barles et al. MAA 2009

C. SPA 2006; C., Méléard, PTRF 2011

C., Lambert, AAP 2007

Baar, Bovier, C., AAP 2017

Durrett, Mayberrry 2011; C., Méléard, Tran 2021

C., Méléard, Mirrahimi, Tran, 2022+

C., Hass, in prep.
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