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Introduction

Adaptive dynamics

Adaptive dynamics: Darwinian evolution
¢ Heredity: transmission of phenotypes
¢ Mutation: modification of phenotypes

¢ Selection: consequence of ecological interactions



Introduction
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Adaptive dynamics

Adaptive dynamics: Darwinian evolution with focus on
© Heredity: transmission of phenotypes ~~ simplified (asexual)
¢ Mutation: modification of phenotypes

¢ Selection: consequence of ecological interactions ~» focus on the
interplay between ecology and evolution

Main question: characterize long-term evolution under assumptions of
¢ large populations
¢ small mutations

® rare mutations

Goal of this talk: build macroscopic models from several combinations
of these 3 hypotheses satisfying key biological features.

Metz et al. 1996; Dieckmann and Law 1996, Geritz et al. 1997, 1998



Individual-based model
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An individual-based (toy) model

Asexual birth and death process with logistic competition and
mutation

¢ Evolution of a quantitative phenotypic trait
¢ Trait space X =R
© A population composed of N (¢) individuals with traits

T, ..., Zn(r) € R is represented by
N(t)
vi=_ 0
i=1

¢ Measure-value pure jump Markov process



Individual-based model
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Population dynamics

N(#)
For an individual with trait z € R in the population v, = Z Oz,
i=1

© clonal reproduction at rate b(z)
¢ reproduction with mutation at rate p(z), mutant trait = + z
with z ~ N(0,1)
N (1)

¢ death with rate d(z) + Z c(z,z;) = d(z) +/ c(z,y)v, (dy)
i=1 R



Individual-based model
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Population dynamics

1
For an individual with trait z € R in the population v/ = Ve Z Oz,

© clonal reproduction at rate b(z)

¢ reproduction with mutation at rate ;p(z), mutant trait z + z
with z ~ N(0,0%)

N(t
© death with rate d(xz Z c(z,z;) = d(z) + / c(z, y)vi (dy)

3 scaling parameters:
¢ large population: K — +o0
® rare mutations: yu — 0

® small mutations: ¢ — 0

Metz et al. 1996; Bolker and Pacala 1997, DeAngelis and Mooij 2005



Individual-based model
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The cube of scaling parameters
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Individual-based model

Simulations: evolutionary arms race with asymetric
competition

Trait space X = [0,4], d(z) =0,
mutation law A(0,0?) (conditioned on z + h € X))
b(z)=4—z, plz)=1, c(z,y)=c(z—y) with

Kisdi, JTB 1999; C., Ferridre, Méléard, TPB 2006



Individual-based model

Simulation
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First K — +oo, then ¢ — 0
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Limit K — +oo alone

Theorem

Under general assumptions on the parameters and the initial
condition, assuming |1 and o constant, vE converges in
D(Ry, Mp(R)) as K — +oo to the unique (weak, measure) solution of

oru(t, ) = (1(0) - d(a) = [ clon)utt.)ay) u(t,o)

+ /IR %G (x ; y) pp(y)u(t, y)dy.

Fournier, Méléard, AAP 2004, C., Ferriére, Méléard, TPB 2006



Limit K — 400

oo, then o — 0
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oo, then o — 0

Simulation
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First K — 400, c > 0
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Small mutations and long time: concentration limit

1
o

8tu0'(ta ZB) = (b(fl?) — d(il?) - A C(CL', y)“’o’(ta y)dy
+M/Rp(fﬂ - Uh)G(h)dh> Uy (t, )
+ g/RP(JJ —oh) (u,(t,z — oh) — u,(t,z)) G(h)dh.

Hopf-Cole transformation:
o (1,
Uy (t, ) = exp (M), or fBy(t,z) =0clnu,(t,z)
o
gives

OB, (t,z) = b(x / e(z, y)us(t, y dy—i—u/ p(z — oh)G(h)dh

p(z — oh) [ (’3" (t, ‘”"_gh) Bolt, ”)> —1] G(h)dh.




First K — +oo, then ¢ — 0
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Hamilton-Jacobi equation

We expect 5, — (8 solution to the Hamilton-Jacobi equation

045 (t, z) =b(z) — d(z) — /R (. ) pue(dy) + ip ()
+ ,up(:v)/R (e—awﬁ“@)h - 1) G(h)dh,

where p; is the limit of wu, (¢, -).
¢ b—d > 0 ~» non-explosion and non-extinction of the population:

lim sup maxﬁo(t z) = 0.
o—0

© How to characterize u.? difficult problem in general!
¢ pq only charges {5(¢,-) = 0}.
@ if{B(t,-) = 0} ={z(t)}, then 0:5(t, 2(t)) = 0 gives

b)) + pp(a(t) — d@(®))
pe = o(2(t), 2(1)) b=

Diekmann et al. 2005; Barles, Perthame 2008;
Mirrahimi et al. 2009; Mirrahimi, Roquejoffre, 2018




First K — +oo, then ¢ — 0
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Hamilton-Jacobi limit

(0,1,0)
o f Hamilton-Jacobi
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First K — + oo, then o
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Simulation
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First K — + oo, then o
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Simulation
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First K — +oo, then ¢ — 0
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Simulation
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First K — +oo, then ¢ — 0
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The tail problem

Example of dynamics of the function 5(¢, z):




First K — +oo, then ¢ — 0
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The tail problem

Example of dynamics of the function 5(¢, z):

‘\ // / \
/ M\
| \ ;/

¢ The dynamics is strongly influenced by exponentially small initial

population densities in favorable regions far away from the initial
population

¢ Positive population densities everywhere ~~ no local extinction
© Evolutionary time-scale is too fast (¢/0)

Perthame and Gauduchon 2010, Mirrahimi et al. 2012
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(Very) rare mutations

The selection process has sufficient time between two mutations to
eliminate disadvantaged traits (time scale separation):

@ succession of phases of mutant invasion, and competition between
traits

© the outcome of competition is given by the deterministic
population dynamics obtained above

Time scales:

¢ of individual mutations: i

© of mutations at the populations level: KLM

¢ of competition: 1

of mutant invasion: log K (time for a super-critical branching
process to reach K)

Metz et al. 1996, C. SPA 2006



Rare mutations
(o] J

(Very) rare mutations: K — 400 and u — 0

Assume that 1/5 — ng 0z with ng > 0. If

VC >0, logK < L < exp(CK),
Kp

then (VgKu,t > 0) converges for f.d.d. to a pure jump Markov process
(Ay, t > 0) with values in the set of positive measures on R with finite
support.

Under assumptions preventing coexistence of several traits,

Ay = n(Xe) 6,
where fi(z) = ﬂ%w—) and (Xi)i>0 is Markov with generator
_ _ _ e+ oh o))t
Lo(@) = [ (ol + o) = pla)p(@)n(@ LD 6nyan

where f(y,z) = b(y) — d(y) — c(y,z)n(z) is the fitness function.

C. SPA 2006; C., Méléard, PTRF 2011; C., Jabin, Méléard JMPA 2014



Rare mutations

Simulation: trait substitution sequence
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Convergence to the TSS

(1,1,1)

Rare mutations
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Rare mutations

Biological criticism: too rare mutations

The scaling limit leading to the T'SS has been also criticized by
biologists:

¢ strictly monomorphic populations are unrealistic

© time scale of evolution is too long (KLM)

¢ mutations are too rare

Intermediate approach: less rare mutations

¢ allowing to take into account non-extinct but negligible
populations may have a strong influence on long term evolution

¢ allowing for local extinction

Waxman, Gavrilets, JEB 2005



Less rare mutations
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A discretized model

© Discretized state space X = {0, 0 < ¢ < 1/} with step §
* Population state (Ng* (1), ..., Nj;(t))
¢ Symmetric mutations to the closest trait

We define

BE (1) = log(1 + NX(tlog K))

i K
i Tog K , le. NiK(tlog K)= KBE® _ 1

© BEK(t) =0 : the population with trait id is extinct
© BE(t) € (0,1) : the population with trait id is non-extinct but
negligible w.r.t. the dominant population (of the order of K).



Less rare mutations
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A scaling with (less) rare mutations

Define the relative fitness function S(7;¢) = r(id) — () with

r(z) = b(z) — d(z).

Assume p = K= with a € (0,1) and that N (0) = | K50 | with
max; 3;(0) = 8,(0) =1 for a unique .

Then (BX)o<i<1/s converges in probability in L2, (R%) to a piecewise
affine function (B;)o<i<1/s such that

0 ife=10*(t)
Bo(t)y=4 max{S(i; £*(t)), i:5;(t) = Bo(t) + |6 — jla, VEA i < j <LV i} ifBe(t) >0,
max{S(i; €% (1)), i # £:8; (£)=Be(t) +1€ — jla, VEA i<j <OV i} if Be(t) =0,

where £*(t) € {0,...,1/d} is such that £*(0) = iy and £*(t) = j for all
J and t such that j # ¢*(t—) and B;(t—) = 1.

Durrett, Mayberry, 2011; Bovier, Coquille, Smadi, 2019; C., Méléard, Tran, 2021
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Another scaling limit

(0,1,0)

(1,1,1)

---------- CEAD
(0,0,0)

EDO for the exponents
(0,0,1) TSS



Less rare mutations

Intuition

Follow small populations of size K on the timescale log K.

Lemma (without mutation)

Consider a linear birth-death (branching) process (Z;);>o with birth
rate b and death rate d, such that Zy = | K?|. Then, in probability in
L>=([o, 17),

log(l + Zﬁog K)
SN T Bleg i s - > o).
( log K ’S—O> K—>+oo> ((64‘3(1) d))\/O,s_O)

Lemma (with mutation)

Consider the same process as above with additional immigration at
rate K°e®, for a,c € R. Then, in probability in L>°([0, T)),

log(1+ ZX
<0g< + SIOgK),SZ())

log K —— ((B+s(b—d)) V(c+as),s20).

K—+oco



Time



Less rare mutations

Simulation with @ = 0.5
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Less rare mutations

Simulation with @ = 0.5
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Complex limit dynamic: the Hamilton-Jacobi approach suggests that
a scaling with small mutations instead of rare mutations should give
simpler dynamics ~+ vanishing grid mesh

Only preliminary results: assume
no competition: ¢(z,y) =0
no extinction: supercritical case and large initial population
trait space [0, 1] with periodic boundary conditions
grid mesh dx, such that hx = dx log K — 0
grid X = {i0g : 0<i<1/ox — 1}
an individual with trait £dx gives birth to a mutant individual
with trait jox at rate p(¢dx)hx G(hi(j — 1))

~ total mutation rate of the order of p({dx)
~» mutation size of the order of 1/log K



Small mutations
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Convergence theorem

For all z, t, let ix be the integer such that = € [ixdk, (ix + 1)dk) and
define the affine interpolation function

e

B (1) = B0 (1= i) + 8l (0 (1 ).

Theorem

Assume B'K (0,-) is uniformly Lipschitz and converges in L to By.
Then 3% converges to the unique viscosity solution of the
Hamilton-Jacobi equation

0i8(t,) = b(o) + up(a) — d(a) + up(z) [

: (e_’"vﬁ(t’z) - 1) G(z)dz

such that 5(0,z) = Bo(z), in DRy, C ([, H])).

C., Méléard, Mirrahimi, Tran, 2022+
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A fourth scaling limit

Hamilton-Jacobi
equation for
(0,1,0) the exponents
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Small mutations

Simulation
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Small mutations

Simulation
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Conclusion

© Great variety of dynamics starting from the same
individual-based model

¢ All are concentration limits, with very different evolutionary
time-scales and macroscopic behaviors

¢ Parameter scalings motivated by discussions in the biological
literature and interactions with biologists

¢ Mathematics can help to shed light on the biological debate
© Also great richness of mathematical tools
¢ And this is not the end of the story...



Filling in the cube...

CEAD
HJ (with cutoff ?)
HJ+CEAD’ Fournier, Méléard, AAP 2004

Diekmann et al. TPB2005; Barles et al.MAA 2009

C. SPA 2006; C., Méléard, PTRF 2011

Baar, Bovier, C., AAP 2017

CEAD Durrett, Mayberrry 2011; C., Méléard, Tran 2021

discretized HJ ?
C., Méléard, Mirrahimi, Tran, 2022+

u
Canonical
diffusion
of AD

C., Hass, in prep.

Conclusion
oe
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