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Mean field games (MFGs)

2006: Lasry-Lions, Huang-Malhame-Caines.
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An example of N players symmetric differential games !

© The dynamic of each player: Fori=1,..., N,
dX! = vidt +cdW!, X§~ mo.

Here, v/ is the strategy (drift), and W] is the independent Brownian
motion (volatility).

!Example from [F. Delarue cours de PGMO 22].
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@ The payoff:

T

i i 1 i i i
J :E[/ §|Vt|2 +mzf(xtfxt{)dt+ g(XT)
0 R , ~——

. J#i terminal cost
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Pass to the limit

The payoff:

i Tl 1 i ' i
J :E[/o §|Vt|2 —|—m2f(Xt—X{)dt+ g(Xt) ]
S~ J#i

. terminal cost
kinetic energy

potential energy

The interaction term: Let m".(t) = ﬁ i Diracy;, then

XJv

Zf(X’ X)) = fxmM (£, X)).
J#I

Its mean field limit is
f s« m(t,x).
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Mean field games
© The dynamic of the representative player:

dXtY = tht + O'th,

XOV ~ mg.
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Mean field games

© The dynamic of the representative player:

dXy = vedt + odW, Xy ~ mg.
@ Given a distribution m(t, x), minimize over v:

.
1
Jm(v):E[/ Sl +Fem(e XV )dt+ g(X7) |
0 R , — ~——

.. otential ener; terminal cost
kinetic energy P gy
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Mean field games

© The dynamic of the representative player:

dXy = vedt + odW, Xy ~ mg.
@ Given a distribution m(t, x), minimize over v:

.
1
Jm(v):E[/ Sl +Fem(e XV )dt+ g(X7) |
0 R , — ~——

.. otential ener; terminal cost
kinetic energy P gy

© Nash equilibrium: (7, m), such that

V= gman (v); (1)
m(t,-) = law(Xy). (2)

LIU (Polytechnique) Theta-scheme Mai 2023 7/38



Hamilton-Jacobi-Bellman equation
The first problem (1) is a stochastic optimal control problem:

: 1 .
nf, B[ Jy Slul 4+ m(eX)de+ g(Xr)

Lo ial i
Kinetic energy potential energy terminal cost

sit. dX! = vedt +odW;, Xy ~ mo.
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Hamilton-Jacobi-Bellman equation

The first problem (1) is a stochastic optimal control problem:

. 1 -
InfvE[foT §|Vt|2 + fam(t, X )dt +  g(X1)

Kinetic energy potential energy terminal cost (3)

sit. dX! = vedt +odW;, Xy ~ mo.

Define the value function @: [0, T] x RY — R,

1
a(t, x) = ianE[ftT §|v7|2 +fam(m, X )dr +  g(XT)
— v

L otential ener, terminal cost
kinetic energy p gy

stt. dXY = vydr+odW,, V71 € [t,T], and X} = x.
Explanation: the optimal value from time t and state x.
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Hamilton-Jacobi-Bellman equation

The HJB equation associated to problem (3) is:

{—%(t,x) — DAt x) + 3192t x)|? =  * m(t, x);
i(T,x) = g(x).

Hamilton-Jacobi-Bellman mapping:
HJB(m) = a,

where @ satisfies (5).
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Optimal strategy

The optimal strategy v is given by

_ ou
v(t,x) = —&(t,x). (6)
Optimal control mapping:
_ o
10/38

LIU (Polytechnique) Theta-scheme Mai 2023



Fokker-Planck equation

The second problem (2) is the distribution of the solution of the following
SDE:

dXtV = \7tdt + O'th, Xg ~ mg.

The distribution of X’ satisfies the following Fokker-Planck equation:

9m (¢, x) — & A m(t, x) + div(vi(t, x)) = 0; @
m(0, x) = mo(x).
Fokker-Planck mapping:
FP(V) = m,
where m satisfies (7).
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MFGs equations

Introduce the value function o by (4).

The Nash equilibrium of MFGs:

i= HIB(m);
v= V(o)
m= FP(V)

Equivalent to the following forward-backward PDEs by (5)-(7):

—90(¢,x) — T Aci(t, x) + 3| 9L (¢, x) |2 = £ (¢, x);

v(t,x) = —%(t,x); ®)
%—;(t,x) A m(t, x) +div(vm(t,x)) =0;

a(T,x) = g( ), m(0,x) = mo(x).

LIU (Polytechnique) Theta-scheme Mai 2023 12/38



LIU (Polytechnique)

General second-order MFGs
Notations.

o T9 .= Rd/Zd;

o Q:=[0,1] x T

o D= {puel?(TY)|pn>0, [rsp(x)dx =1}
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General second-order MFGs

Notations.
o T9 :=R9/77,
e Q:=10,1] x T,
o D= {ueLXT)|u >0, [psp(x)dx =1}.

Data.
@ Running cost /: Q x RY — R;
@ Congestion cost 7¢: @ x D — R,
@ Initial condition m§ € D;
o Terminal cost g¢: T9 — R.
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General second-order MFGs
The equation of second-order MFGs on a torus: V (t,x) € Q,

—98(t,x) — oAu(t,x) + H (t, x, Vu(t, x)) = F(t, x, m(t));
v(t,x) = —Hg (t,x, Vu(t,x));

%—T(t,x) — oAm(t,x) + div(vm(t,x)) = 0;

Lu(1,x) = g°(x), m(0, x) = mg(x),
(MFG)
where the Hamiltonian H€ is the Fenchel conjugate of £€:

H(t, x,p) = sup —{(p,v) — £(t,x, V).
veRd
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Assumptions

Assumption A.
@ (Lipschitz regularity). There exists L¢ > 0, such that
> (-, v), £5(- x,v), g°(+) and F€(-,-, m) are L -Lipschitz continuous;
> <(t,x,-)is L -Lipschitz continuous w.r.t. || - [|L2-norm.

@ (Strong convexity). Function £°(t, x, ) is a“-strongly convex.

@ (Monotonicity). For any my and my in D,

/[rd (fC(t,x, my) — £°(t, x, m2)> (ml(x) — mz(X))dx > 0.
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Assumptions

Assumption A.
@ (Lipschitz regularity). There exists L¢ > 0, such that
> (-, v), £5(- x,v), g°(+) and F€(-,-, m) are L -Lipschitz continuous;
> <(t,x,-)is L -Lipschitz continuous w.r.t. || - [|L2-norm.

@ (Strong convexity). Function £°(t, x, ) is a“-strongly convex.

@ (Monotonicity). For any my and my in D,
/ (fc(t,x, m1) — F<(t, x, mz)) (ma(x) — ma(x))dx > 0.
Td

Assumption B.
Equation (MFG) has a unique solution (u*, v*, m*), with

u*, m* € CH/2247(Q) and v* € C"(Q) NIL°([0, 1]; C**+7(T9)),
for some r € (0,1).
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Classical solution of MFGs

Theorem 1 [Bonnans-L.-Pfeiffer]
Let Assumption A hold. Suppose that
@ there exists C > 0, such that

0°(t,x,v) < C||v||2 + C, |fe(t, x, m)| < C;

o (€€ C3(Q x RY) and m§, g€ € C3(T9).

Then, (MFG) has a unique solution (u*, v*, m*) satisfying Assumption B
for any r < 1.
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Some references on numerical methods of MFGs

o Finite difference method: Implicit schemes [Achdou-Capuzzo 10,
Achdou-Camilli-Capuzzo 13, Achdou-Porretta 16].
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Achdou-Camilli-Capuzzo 13, Achdou-Porretta 16].

o Semi-Lagrangian method: non-degenerate second-order MFG,
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dimension 1 [Carlini-Silva 14, 15].

e Optimization method (potential games): [Benamou-Carlier 15,
Cardaliaguet-Hadikhanloo 17, Achdou-Lauriere 20, Lavigne-Pfeiffer
21].

e Deep learning method: DeepFBSDE [Germain-Pham-Warin 21,
Carmona-Lauriere 21, Germain-Lauriere-Pham-Warin 22].
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Notations in finite difference scheme

e Natural canonical basis of RY: (e1)i=1,...d;
e Time step: At =1/T; Time set T = {0, 1,
@ Space step: h = 1/N; Discretization of T9:

LT 1)

S={(i,i2,--- ig)h | i,...,iq € Z/NZ}.
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Notations in finite difference scheme

e Natural canonical basis of RY: (e1)i=1,...d;
@ Time step: At=1/T,; Timeset T ={0,1,..., T —1}.
@ Space step: h = 1/N; Discretization of T9:

S={(i,i2,--- ig)h | i,...,iq € Z/NZ}.

Operators for the centered finite difference scheme:
Let u: S — Rand w: S — RY.

u(~+hei)—u(~—hef)>d
2h i=1

o Discrete gradient: Vpu = (

o Discrete Laplacian: Apu =7, “('Jrhe"”“g{he")_z“(');

o Discrete divergence: divyw = Y9 @ilhe) wi(—he)
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Notations for the discretization of the data of MFGs
Notations.

o R(T9) (resp. R(S)): Set of functions from T¢ (resp. S) to R.
o Lattice:

d
Bu(x) = [ [Ix — hei/2,x + hei/2), V¥x€S.
i=1

LIU (Polytechnique) Theta-scheme Mai 2023

20/38



Notations for the discretization of the data of MFGs

Notations.

o R(T9) (resp. R(S)): Set of functions from T¢ (resp. S) to R.

o Lattice:

d
Bu(x) = [ [Ix — hei/2,x + hei/2), V¥x€S.
i=1

Two operators.
o Ip: R(TY) — R(S),

Ih(mc)(x):/B( My, e
° Rp: R(S) — R(TY),
R(m)(y) = ") v s,y e By(x).
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Discretization of the data of MFGs

@ Running cost
Ut x,v) = L(tAt, x, V),

Hamiltonian
H(t,x,p) = H(tAt, x, p);

@ Initial condition
mo(x) == Zp(mg)(x);

Terminal cost
g(x) = g(x);

Congestion cost

o),

— feltAt,y,Rn(m))dy.
h? Jyesux) ( )

Remark: Compared to [Achdou-Camilli-Capuzzo 2013], we do not introduce a
“numerical” Hamiltonian for the discretization of Hamiltonian.

f(t,x,m) =
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The 6-scheme of heat equation
Consider the heat equation in Q:

%—T(t,x) — Am(t,x) =0, (t,x) € Q;
m(0,x) = mo(x), x €T,

Let 0 € [0,1], the #-scheme of (9): Forall t € T,

m(t+ 1) — m(t)
At

—0Am(t+1) — (1 —0)Apm(t) = 0.

Remark:
@ 0 = 0: The explicit scheme,
m(t+1) — m(t)
R A Y =0.
At hm(t) 0
@ 0 =1: The implicit scheme,

m(t+ 1) — m(t)

A — Apm(t+1)=0.
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The 6-scheme of heat equation

The 6-scheme of (9): Forall t €T,

e 1A)t_ mit) _ 00pm(t +1) — (1 = 0)Apm(t) = 0.

It is equivalent to
mE2=ml) (1 g)A,m(t) =0,
mEt)omEE2) _ gA,m(t+1) =0,

where m(t + 1/2) is an auxiliary variable determined by m(t).
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The #-scheme of (MFG): -MFG

@ HJB equation:
{_w —foApu(t+1/2) =0,

t

MR (1~ g)aApu(t + 1/2) + H(Vau(t + 1/2)) = f(m(t));

LIU (Polytechnique) Theta-scheme Mai 2023 24/38



The #-scheme of (MFG): -MFG
@ HJB equation:

e _uH2) oo Apu(t +1/2) = 0,
—MERue) (1 ) Apu(t+1/2) + H(Vhu(t +1/2)) = F(m(t));
@ Optimal control:

v(t,x) = —Hp(t, x, Vau(t +1/2,x)).
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The #-scheme of (MFG): -MFG
@ HJB equation:

D ZVE2) oA u(t +1/2) = 0,
{—W — (L= 0)oDpu(t+1/2) + H(Vhu(t +1/2)) = f(m(t));
@ Optimal control:
v(t,x) = —Hp(t, x, Vau(t +1/2,x)).
© Fokker-Planck equation:

At

m(e1/2)=mt) _ (1 _ g)gApm(t) + diva(mv(t)) = 0,
mEN=m(E/2) oA pm(t + 1) = 0.
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The #-scheme of (MFG): 6-MFG
@ HJB equation:

MR (1~ g)aApu(t + 1/2) + H(Vau(t + 1/2)) = f(m(t));

{_W —foApu(t+1/2) =0,

@ Optimal control:
v(t,x) = —Hp(t, x, Vau(t +1/2,x)).

© Fokker-Planck equation:

At

m(e1/2)=mt) _ (1 _ g)gApm(t) + diva(mv(t)) = 0,
mEN=m(E/2) oA pm(t + 1) = 0.

@ Initial and terminal conditions:

m(0, x) = mp(x), u(T,x) = g(x).
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The CFL condition

Recall in Assumption A:
@ L°: the Lipschitz constant of the data;

@ «F: the strong-convexity constant of /€ w.r.t. v.
Define a constant

1
M = —(2 max_[|€(t, x, 0)|| + 3\/ELC).
(£0€Q

OZC

The CFL condition of 8-MFG:

h? 2(1—0)o

Ar< " <
'S AT =) STM
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Main result

Let A; and A; be two finite sets and p: A; X Ay — R. Define

lloc.c0 = maxmax |u(x, y)], - llnlloe = g]e%y; u(x, ).
2
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Main result
Let A; and A; be two finite sets and p: A; X Ay — R. Define

I1lloc.00 = max max|pu(x, )l flpfloc = max ; u(x, ).
yeA2

Theorem 2

Let Assumptions A and B hold true. Let § € (1/2,1) and let (At, h)
satisfy the condition (CFL). Then, §-MFG has a unique solution

(up, v, mp). Moreover, there exists a constant C > 0, independent of At
and h, such that

lun — tlloo,00 + [[Mp — Mllo,1 < Ch,

where u(t) == u*(tAt) and where m(t) = Z,(m*(tAt)).
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Methodology of the numerical analysis

We introduce a general framework of discrete mean field games (DMFG)
and
6-MFG € (DMFG).
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Methodology of the numerical analysis

We introduce a general framework of discrete mean field games (DMFG)
and

6-MFG € (DMFG).

Steps to study the convergence of §-MFG:
© Existence and uniqueness.

Remark: We skip the part of (DMFG) in this presentation.
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@ Stability analysis.

» Ju: Stability of the discrete HJB equation.
> ||0v||?m: A fundamental inequality.
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Methodology of the numerical analysis

We introduce a general framework of discrete mean field games (DMFG)
and

0-MFG € (DMFG).

Steps to study the convergence of §-MFG:
© Existence and uniqueness.

» Existence: Applying Brouwer's fixed point theorem to (DMFG);
» Uniqueness: A fundamental inequality.
@ Stability analysis.

» Ju: Stability of the discrete HJB equation.
> ||0v||?m: A fundamental inequality.

» dm: Energy inequality of a discrete parabolic equation.
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We introduce a general framework of discrete mean field games (DMFG)
and
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Steps to study the convergence of §-MFG:
© Existence and uniqueness.

» Existence: Applying Brouwer's fixed point theorem to (DMFG);
» Uniqueness: A fundamental inequality.

@ Stability analysis.

» Ju: Stability of the discrete HJB equation.
> ||0v||?m: A fundamental inequality.

» dm: Energy inequality of a discrete parabolic equation.

© Consistency analysis.
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Methodology of the numerical analysis

We introduce a general framework of discrete mean field games (DMFG)
and

0-MFG € (DMFG).

Steps to study the convergence of §-MFG:
© Existence and uniqueness.

» Existence: Applying Brouwer's fixed point theorem to (DMFG);
» Uniqueness: A fundamental inequality.

@ Stability analysis.
» Ju: Stability of the discrete HJB equation.
> ||0v||?m: A fundamental inequality.
» dm: Energy inequality of a discrete parabolic equation.

© Consistency analysis.
» Regularity of (u*, v*, m*) in Assumption B.

Remark: We skip the part of (DMFG) in this presentation.
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A perturbed #-scheme: 6-MFG(§)

A perturbed version of -MFG with additional terms (d1, d2):
@ Perturbed HJB equation:

—ueRImu®) (1~ )gApu(t +1/2) + H(Vau(t + 1/2)) = F(m(t));

{_W — o Apu(t +1/2) = d1(t),

@ Optimal control:
v(t,x) = —Hp(t,x, Vhu(t +1/2,x)).
© Perturbed Fokker-Planck equation:
{42'"““/2)—"7“ — (1= 0)oApm(t) + divy(mv(t)) = 0

)

At
M) omtt1/2) _ go N, m(t + 1) = 6,(t).

@ Initial and terminal conditions:

m(O,X) = mO(X)7 U(Ta X) = g(X)
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Stability analysis of -MFG: HJB equation

Suppose that (u°,v®, m%) satisfies §-MFG(8) and m® > 0. Let
(up, v, mp) be a solution of -MFG. Denote by

5u:u5—uh, (5v:v5—vh, Sm=m’ — my,.

Lemma 1 (Stability of HJB)
Let Assumptions A and condition (CFL) hold true. Then,

©

L
19ulloc,00 < +g75110mMllo0,2 + At]d1 l1,00-

Recall:

lilloo = max luCx, ey lllo = D sl Yoo

xXEA]
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Stability analysis of -MFG: Fundamental inequality

Lemma 2 (Fundamental inequality)
Let Assumption A and condition (CFL) hold true. Then,

oS S Il ) mn + m) (e x) < ST S Bt + 1, 1), %)

teT xeS teT x€S

+D 0 " am(t,x)di(t, x).

teT x€S

Corollary: Scheme 6-MFG has a unique solution.

Remark: A similar fundamental equality is proved for an implicit scheme in
[Achdou-Camilli-Capuzzo 2013]. A continuous version of this fundamental equality is
given in [Cardaliaguet-Lasry-Lions-Porretta 2013].
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Stability analysis of -MFG: Energy inequality

@ Summing the two steps of the Fokker-Planck equation in 8-MFG,

m(t+ 1) — m(t)

At —0Aym(t+1) — (1 — 0)Arm(t) + divpmv(t) = 0.

@ Let u satisfy a perturbed Fokker-Planck equation:

{W = 08npa(t +1) = (1 = 0)Anpa(t) + divapv(t) = divims (£) + 2 (t),
1(0) =

Lemma 3 (Energy inequality)

independent of h and At such that

1125 < cat > [m|5 + [m(0)]5
teT

Let > 1/2 and ||v||oo,00 < M. Then, there exists some constant ¢
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Consistency error

Recall that (u*, v*, m*) is the solution of (MFG).
o Let u(t) = u*(tAt) and m(t) = Zp(m*(tAt)).
e Compute the auxiliary variable u(t +1/2) by

u(t+1) —u(t+1/2)
a At

o Let v(t,x) = —Hp(t,x, Vhu(t +1/2)).

—OoApu(t+1/2) =0.

Lemma 4 (Consistency error)

Let Assumption B and condition (CFL) hold. The triplet (u, v, m) is a
solution to the perturbed system §-MFG(J), with perturbation terms

satisfying

51 = O(h"), 62 = divams + 12, m = O(K*"9), mp = O(A™+).
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Recall the consistency error:

Sketch of the proof of Theorem 2

51 = O(h"), § =divem +1m2, m

_ (,)(hQr-#d)7 N = O(hr+d).
Let e = At ZteT ers lov(t, x)||2(mh + m)(t, x).
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Sketch of the proof of Theorem 2

Recall the consistency error:
61 = O(h"), 6 = divans 4+ 12, m = O(K*9), o = O(h).
Let e = AtY . cr D es 10v(t, x)|IP(mn + m)(t, x).
@ By the stability of the HJB equation,

I5ull,c0 < CL(I6mlloo 2h™ "2 + 7).
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Sketch of the proof of Theorem 2

Recall the consistency error:
51 = O(h), 6 = divem + 12, 1 = O(K*), 1, = O(h).

Let e = At ZteT ers ||<5v(t,x)||2(m;7 + m)(t, x).

@ By the stability of the HJB equation,

[6uloo,00 < Cu([|dm|lco2h™ % + H').
@ By the fundamental inequality and the previous inequality,

€ < G(||dm]|oc2h™ ¥ + 1.
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Sketch of the proof of Theorem 2

Recall the consistency error:
51 = O(h), 6 = divem + 12, 1 = O(K*), 1, = O(h).

Let e = At ZteT ers ||6v(t,x)||2(m;7 + m)(t, x).

@ By the stability of the HJB equation,

[6ullco.00 < Ci(|[dml|oo,ah™ > + h7).
@ By the fundamental inequality and the previous inequality,
€ < G(||dm]|oc2h™ ¥ + 1.
© By the energy inequality,

[6ml|% 2 < Csh? (e + h*).
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Sketch of the proof of Theorem 2

Recall the consistency error:
61 = O(h"), 6 = divans 4+ 12, m = O(K*9), o = O(h).

Let e = AtY . cr D es 10v(t, x)|IP(mn + m)(t, x).

@ By the stability of the HJB equation,

[6ullco.00 < Ci(|[dml|oo,ah™ > + h7).
@ By the fundamental inequality and the previous inequality,
€ < G(||dm]|oc2h™ ¥ + 1.
© By the energy inequality,
15ml1% 2 < C3h? (e + H*").
@ Combining the previous two estimates, it follows:

l5mlloo.2 < Cah /2.
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Conclusion and perspectives

Conclusion:

@ We propose a f-scheme of second-order MFGs and give its error
estimates;

@ We propose a general framework of discrete MFGs (not mentioned in
this presentation) and give its stability analysis (essentially, the
fundamental inequality).

Perspectives:

@ Some numerical algorithms to solve -MFG (specially in potential
case);

@ Some “splitting” methods to reduce the complexity of computation in
high dimensions, etc.
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