Error estimates of a theta-scheme for second-order mean field games

J. Frédéric Bonnans ${ }^{1}$ Kang Liu ${ }^{* 12}$ Laurent Pfeiffer ${ }^{1}$
${ }^{1}$ Université Paris-Saclay, CNRS, CentraleSupélec, Inria, L2S
${ }^{2}$ Institut Polytechnique de Paris, CNRS, Ecole Polytechnique, CMAP

Mai 2023

Table of Contents

(1) Introduction to second-order MFGs
(2) The Theta-scheme and the convergence result
(3) Numerical analysis
(4) Conclusion and perspectives

Table of Contents

(1) Introduction to second-order MFGs
(2) The Theta-scheme and the convergence result
(3) Numerical analysis

4 Conclusion and perspectives

Mean field games (MFGs)

2006: Lasry-Lions, Huang-Malhame-Caines.

a. Traffic congestion

b. Fish migration

An example of N players symmetric differential games ${ }^{1}$

(1) The dynamic of each player: For $i=1, \ldots, N$,

$$
d X_{t}^{i}=v_{t}^{i} d t+\sigma d W_{t}^{i}, \quad X_{0}^{i} \sim m_{0}
$$

Here, v_{t}^{i} is the strategy (drift), and W_{t}^{i} is the independent Brownian motion (volatility).

An example of N players symmetric differential games ${ }^{1}$

(1) The dynamic of each player: For $i=1, \ldots, N$,

$$
d X_{t}^{i}=v_{t}^{i} d t+\sigma d W_{t}^{i}, \quad X_{0}^{i} \sim m_{0} .
$$

Here, v_{t}^{i} is the strategy (drift), and W_{t}^{i} is the independent Brownian motion (volatility).
(2) The payoff:

$$
J^{i}=\mathbb{E}[\int_{0}^{T} \underbrace{\frac{1}{2}\left|v_{t}^{i}\right|^{2}}_{\text {kinetic energy }}+\underbrace{\frac{1}{N-1} \sum_{j \neq i} f\left(X_{t}^{i}-X_{t}^{j}\right) d t+\underbrace{g\left(X_{T}^{i}\right)}_{\text {terminal cost }}], ~}_{\text {potential energy }}
$$

${ }^{1}$ Example from [F. Delarue cours de PGMO 22].

Pass to the limit

The payoff:

The interaction term: Let $m_{-i}^{N}(t)=\frac{1}{N-1} \sum_{j \neq i}$ Dirac $_{X_{t}^{j}}$, then

$$
\frac{1}{N-1} \sum_{j \neq i} f\left(X_{t}^{i}-X_{t}^{j}\right)=f * m_{-i}^{N}\left(t, X_{t}^{i}\right)
$$

Its mean field limit is

$$
f * m(t, x) .
$$

Mean field games

(1) The dynamic of the representative player:

$$
d X_{t}^{\vee}=v_{t} d t+\sigma d W_{t}, \quad X_{0}^{\vee} \sim m_{0}
$$

Mean field games

(1) The dynamic of the representative player:

$$
d X_{t}^{\vee}=v_{t} d t+\sigma d W_{t}, \quad X_{0}^{\vee} \sim m_{0}
$$

(2) Given a distribution $m(t, x)$, minimize over v :

$$
J_{m}(v)=\mathbb{E}[\int_{0}^{T} \underbrace{\frac{1}{2}\left|v_{t}\right|^{2}}_{\text {kinetic energy }}+\underbrace{f * m\left(t, X_{t}^{v}\right)}_{\text {potential energy }} d t+\underbrace{g\left(X_{T}\right)}_{\text {terminal cost }}]
$$

Mean field games

(1) The dynamic of the representative player:

$$
d X_{t}^{v}=v_{t} d t+\sigma d W_{t}, \quad X_{0}^{v} \sim m_{0}
$$

(2) Given a distribution $m(t, x)$, minimize over v :

$$
J_{m}(v)=\mathbb{E}[\int_{0}^{T} \underbrace{\frac{1}{2}\left|v_{t}\right|^{2}}_{\text {kinetic energy }}+\underbrace{f * m\left(t, X_{t}^{v}\right)}_{\text {potential energy }} d t+\underbrace{g\left(X_{T}\right)}_{\text {terminal cost }}]
$$

(3) Nash equilibrium: (\bar{v}, \bar{m}), such that

$$
\begin{align*}
\bar{v} & =\operatorname{argmin} J_{\bar{m}}(v) ; \tag{1}\\
\bar{m}(t, \cdot) & =\operatorname{law}\left(X_{t}^{\bar{t}}\right) . \tag{2}
\end{align*}
$$

Hamilton-Jacobi-Bellman equation

The first problem (1) is a stochastic optimal control problem:

$$
\left\{\begin{array}{l}
\inf _{v} \mathbb{E}[\int_{0}^{T} \underbrace{\frac{1}{2}\left|v_{t}\right|^{2}}_{\text {kinetic energy }}+\underbrace{f * \bar{m}\left(t, X_{t}^{v}\right)}_{\text {potential energy }} d t+\underbrace{g\left(X_{T}\right)}_{\text {terminal cost }}] \tag{3}\\
\text { s.t. } d X_{t}^{\vee}=v_{t} d t+\sigma d W_{t}, \quad X_{0}^{v} \sim m_{0} .
\end{array}\right.
$$

Hamilton-Jacobi-Bellman equation

The first problem (1) is a stochastic optimal control problem:

$$
\left\{\begin{array}{l}
\inf _{v} \mathbb{E}[\int_{0}^{T} \underbrace{\frac{1}{2}\left|v_{t}\right|^{2}}_{\text {kinetic energy }}+\underbrace{f * \bar{m}\left(t, X_{t}^{\vee}\right)}_{\text {potential energy }} d t+\underbrace{g\left(X_{T}\right)}_{\text {terminal cost }}] \tag{3}\\
\text { s.t. } d X_{t}^{\vee}=v_{t} d t+\sigma d W_{t}, \quad X_{0}^{\vee} \sim m_{0} .
\end{array}\right.
$$

Define the value function $\bar{u}:[0, T] \times \mathbb{R}^{d} \rightarrow \mathbb{R}$,

$$
\{\bar{u}(t, x)=\inf _{v} \mathbb{E}[\int_{t}^{T} \underbrace{\frac{1}{2}\left|v_{\tau}\right|^{2}}_{\text {kinetic energy }}+\underbrace{f * \bar{m}\left(\tau, X_{\tau}^{v}\right)}_{\text {potential energy }} d \tau+\underbrace{g\left(X_{T}\right)}_{\text {terminal cost }}]
$$

$$
\begin{equation*}
\text { s.t. } d X_{\tau}^{v}=v_{\tau} d \tau+\sigma d W_{\tau}, \forall \tau \in[t, T], \quad \text { and } X_{t}^{v}=x \tag{4}
\end{equation*}
$$

Explanation: the optimal value from time t and state x.

Hamilton-Jacobi-Bellman equation

The HJB equation associated to problem (3) is:

$$
\left\{\begin{array}{l}
-\frac{\partial \bar{u}}{\partial t}(t, x)-\frac{\sigma^{2}}{2} \Delta_{x} \bar{u}(t, x)+\frac{1}{2}\left|\frac{\partial \bar{u}}{\partial x}(t, x)\right|^{2}=f * \bar{m}(t, x) ; \tag{5}\\
\bar{u}(T, x)=g(x) .
\end{array}\right.
$$

Hamilton-Jacobi-Bellman mapping:

$$
\operatorname{HJB}(\bar{m}):=\bar{u},
$$

where \bar{u} satisfies (5).

Optimal strategy

The optimal strategy \bar{v} is given by

$$
\begin{equation*}
\bar{v}(t, x)=-\frac{\partial \bar{u}}{\partial x}(t, x) . \tag{6}
\end{equation*}
$$

Optimal control mapping:

$$
\mathbf{V}(\bar{u}):=-\frac{\partial \bar{u}}{\partial x}
$$

Fokker-Planck equation

The second problem (2) is the distribution of the solution of the following SDE:

$$
d X_{t}^{\bar{v}}=\bar{v}_{t} d t+\sigma d W_{t}, \quad X_{0}^{\bar{v}} \sim m_{0}
$$

The distribution of $X_{t}^{\bar{y}}$ satisfies the following Fokker-Planck equation:

$$
\left\{\begin{array}{l}
\frac{\partial \bar{m}}{\partial t}(t, x)-\frac{\sigma^{2}}{2} \Delta_{x} \bar{m}(t, x)+\operatorname{div}(\bar{v} \bar{m}(t, x))=0 \tag{7}\\
\bar{m}(0, x)=m_{0}(x)
\end{array}\right.
$$

Fokker-Planck mapping:

$$
\mathbf{F P}(\bar{v}):=\bar{m},
$$

where \bar{m} satisfies (7).

MFGs equations

Introduce the value function \bar{u} by (4).

The Nash equilibrium of MFGs:

$$
\begin{cases}\bar{u}= & \mathbf{H J B}(\bar{m}) ; \\ \bar{v}= & \mathbf{V}(\bar{u}) ; \\ \bar{m}= & \mathbf{F P}(\bar{v}) .\end{cases}
$$

Equivalent to the following forward-backward PDEs by (5)-(7):

$$
\left\{\begin{array}{l}
-\frac{\partial \bar{u}}{\partial t}(t, x)-\frac{\sigma^{2}}{2} \Delta_{x} \bar{u}(t, x)+\frac{1}{2}\left|\frac{\partial \bar{u}}{\partial x}(t, x)\right|^{2}=f * \bar{m}(t, x) ; \\
\bar{v}(t, x)=-\frac{\partial \bar{u}}{\partial x}(t, x) ; \tag{8}\\
\frac{\partial \bar{m}}{\partial t}(t, x)-\frac{\sigma^{2}}{2} \Delta_{x} \bar{m}(t, x)+\operatorname{div}(\bar{v} \bar{m}(t, x))=0 ; \\
\bar{u}(T, x)=g(x), \bar{m}(0, x)=m_{0}(x) .
\end{array}\right.
$$

General second-order MFGs

Notations.

- $\mathbb{T}^{d}:=\mathbb{R}^{d} / \mathbb{Z}^{d}$;
- $Q:=[0,1] \times \mathbb{T}^{d}$;
- $\mathcal{D}:=\left\{\mu \in \mathbb{L}^{2}\left(\mathbb{T}^{d}\right) \mid \mu \geq 0, \int_{\mathbb{T}^{d}} \mu(x) d x=1\right\}$.

General second-order MFGs

Notations.

- $\mathbb{T}^{d}:=\mathbb{R}^{d} / \mathbb{Z}^{d}$;
- $Q:=[0,1] \times \mathbb{T}^{d}$;
- $\mathcal{D}:=\left\{\mu \in \mathbb{L}^{2}\left(\mathbb{T}^{d}\right) \mid \mu \geq 0, \int_{\mathbb{T}^{d}} \mu(x) d x=1\right\}$.

Data.

- Running cost $\ell^{c}: Q \times \mathbb{R}^{d} \rightarrow \mathbb{R}$;
- Congestion cost $f^{c}: Q \times \mathcal{D} \rightarrow \mathbb{R}$;
- Initial condition $m_{0}^{c} \in \mathcal{D}$;
- Terminal cost $g^{c}: \mathbb{T}^{d} \rightarrow \mathbb{R}$.

General second-order MFGs

The equation of second-order MFGs on a torus: $\forall(t, x) \in Q$,

$$
\left\{\begin{array}{l}
-\frac{\partial u}{\partial t}(t, x)-\sigma \Delta u(t, x)+H^{c}(t, x, \nabla u(t, x))=f^{c}(t, x, m(t)) \\
v(t, x)=-H_{p}^{c}(t, x, \nabla u(t, x)) \\
\frac{\partial m}{\partial t}(t, x)-\sigma \Delta m(t, x)+\operatorname{div}(v m(t, x))=0 \\
u(1, x)=g^{c}(x), m(0, x)=m_{0}^{c}(x)
\end{array}\right.
$$

(MFG)
where the Hamiltonian H^{c} is the Fenchel conjugate of ℓ^{c} :

$$
H^{c}(t, x, p)=\sup _{v \in \mathbb{R}^{d}}-\langle p, v\rangle-\ell^{c}(t, x, v)
$$

Assumptions

Assumption A.

(1) (Lipschitz regularity). There exists $L^{c}>0$, such that

- $\ell^{c}(\cdot, \cdot, v), \ell_{v}^{c}(\cdot, x, v), g^{c}(\cdot)$ and $f^{c}(\cdot, \cdot, m)$ are L^{c}-Lipschitz continuous;
- $f^{c}(t, x, \cdot)$ is L^{c}-Lipschitz continuous w.r.t. $\|\cdot\|_{\mathbb{L}^{2}}$ norm.
(2) (Strong convexity). Function $\ell^{c}(t, x, \cdot)$ is α^{c}-strongly convex.
(3) (Monotonicity). For any m_{1} and m_{2} in \mathcal{D},

$$
\int_{\mathbb{T}^{d}}\left(f^{c}\left(t, x, m_{1}\right)-f^{c}\left(t, x, m_{2}\right)\right)\left(m_{1}(x)-m_{2}(x)\right) d x \geq 0
$$

Assumptions

Assumption A.

(1) (Lipschitz regularity). There exists $L^{c}>0$, such that

- $\ell^{c}(\cdot, \cdot, v), \ell_{v}^{c}(\cdot, x, v), g^{c}(\cdot)$ and $f^{c}(\cdot, \cdot, m)$ are L^{c}-Lipschitz continuous;
- $f^{c}(t, x, \cdot)$ is L^{c}-Lipschitz continuous w.r.t. $\|\cdot\|_{\mathbb{L}^{2}}$-norm.
(2) (Strong convexity). Function $\ell^{c}(t, x, \cdot)$ is α^{c}-strongly convex.
(3) (Monotonicity). For any m_{1} and m_{2} in \mathcal{D},

$$
\int_{\mathbb{T}^{d}}\left(f^{c}\left(t, x, m_{1}\right)-f^{c}\left(t, x, m_{2}\right)\right)\left(m_{1}(x)-m_{2}(x)\right) d x \geq 0
$$

Assumption B.

Equation (MFG) has a unique solution $\left(u^{*}, v^{*}, m^{*}\right)$, with

$$
u^{*}, m^{*} \in \mathcal{C}^{1+r / 2,2+r}(Q) \text { and } v^{*} \in \mathcal{C}^{r}(Q) \cap \mathbb{L}^{\infty}\left([0,1] ; \mathcal{C}^{1+r}\left(\mathbb{T}^{d}\right)\right)
$$

for some $r \in(0,1)$.

Classical solution of MFGs

Theorem 1 [Bonnans-L.-Pfeiffer]
Let Assumption A hold. Suppose that

- there exists $C>0$, such that

$$
\ell^{c}(t, x, v) \leq C\|v\|^{2}+C, \quad\left|f^{c}(t, x, m)\right| \leq C ;
$$

- $\ell^{c} \in \mathcal{C}^{3}\left(Q \times \mathbb{R}^{d}\right)$ and $m_{0}^{c}, g^{c} \in \mathcal{C}^{3}\left(\mathbb{T}^{d}\right)$.

Then, (MFG) has a unique solution $\left(u^{*}, v^{*}, m^{*}\right)$ satisfying Assumption B for any $r<1$.

Some references on numerical methods of MFGs

- Finite difference method: Implicit schemes [Achdou-Capuzzo 10, Achdou-Camilli-Capuzzo 13, Achdou-Porretta 16].

Some references on numerical methods of MFGs

- Finite difference method: Implicit schemes [Achdou-Capuzzo 10, Achdou-Camilli-Capuzzo 13, Achdou-Porretta 16].
- Semi-Lagrangian method: non-degenerate second-order MFG, degenerate second-order MFG (including first-order MFG) in dimension 1 [Carlini-Silva 14, 15].

Some references on numerical methods of MFGs

- Finite difference method: Implicit schemes [Achdou-Capuzzo 10, Achdou-Camilli-Capuzzo 13, Achdou-Porretta 16].
- Semi-Lagrangian method: non-degenerate second-order MFG, degenerate second-order MFG (including first-order MFG) in dimension 1 [Carlini-Silva 14, 15].
- Optimization method (potential games): [Benamou-Carlier 15, Cardaliaguet-Hadikhanloo 17, Achdou-Lauriere 20, Lavigne-Pfeiffer 21].

Some references on numerical methods of MFGs

- Finite difference method: Implicit schemes [Achdou-Capuzzo 10, Achdou-Camilli-Capuzzo 13, Achdou-Porretta 16].
- Semi-Lagrangian method: non-degenerate second-order MFG, degenerate second-order MFG (including first-order MFG) in dimension 1 [Carlini-Silva 14, 15].
- Optimization method (potential games): [Benamou-Carlier 15, Cardaliaguet-Hadikhanloo 17, Achdou-Lauriere 20, Lavigne-Pfeiffer 21].
- Deep learning method: DeepFBSDE [Germain-Pham-Warin 21, Carmona-Lauriere 21, Germain-Lauriere-Pham-Warin 22].

Table of Contents

(1) Introduction to second-order MFGs

(2) The Theta-scheme and the convergence result

Notations in finite difference scheme

- Natural canonical basis of $\mathbb{R}^{d}:\left(e_{i}\right)_{i=1, \ldots, d}$;
- Time step: $\Delta t=1 / T$; Time set $\mathcal{T}=\{0,1, \ldots, T-1\}$.
- Space step: $h=1 / N$; Discretization of \mathbb{T}^{d} :

$$
S=\left\{\left(i_{1}, i_{2}, \ldots, i_{d}\right) h \mid i_{1}, \ldots, i_{d} \in \mathbb{Z} / N \mathbb{Z}\right\} .
$$

Notations in finite difference scheme

- Natural canonical basis of $\mathbb{R}^{d}:\left(e_{i}\right)_{i=1, \ldots, d}$;
- Time step: $\Delta t=1 / T$; Time set $\mathcal{T}=\{0,1, \ldots, T-1\}$.
- Space step: $h=1 / N$; Discretization of \mathbb{T}^{d} :

$$
S=\left\{\left(i_{1}, i_{2}, \ldots, i_{d}\right) h \mid i_{1}, \ldots, i_{d} \in \mathbb{Z} / N \mathbb{Z}\right\} .
$$

Operators for the centered finite difference scheme:
Let $\mu: S \rightarrow \mathbb{R}$ and $\omega: S \rightarrow \mathbb{R}^{d}$.

- Discrete gradient: $\nabla_{h} \mu=\left(\frac{\mu\left(\cdot+h e_{i}\right)-\mu\left(\cdot-h e_{i}\right)}{2 h}\right)_{i=1}^{d}$;
- Discrete Laplacian: $\Delta_{h} \mu=\sum_{i=1}^{d} \frac{\mu\left(\cdot+h e_{i}\right)+\mu\left(\cdot-h e_{i}\right)-2 \mu(\cdot)}{h^{2}}$;
- Discrete divergence: $\operatorname{div}_{h} \omega=\sum_{i=1}^{d} \frac{\omega_{i}\left(\cdot+h e_{i}\right)-\omega_{i}\left(\cdot-h e_{i}\right)}{2 h}$.

Notations for the discretization of the data of MFGs Notations.

- $\mathbb{R}\left(\mathbb{T}^{d}\right)$ (resp. $\mathbb{R}(S)$): Set of functions from \mathbb{T}^{d} (resp. S) to \mathbb{R}.
- Lattice:

$$
B_{h}(x):=\prod_{i=1}^{d}\left[x-h e_{i} / 2, x+h e_{i} / 2\right), \quad \forall x \in S
$$

Notations for the discretization of the data of MFGs Notations.

- $\mathbb{R}\left(\mathbb{T}^{d}\right)($ resp. $\mathbb{R}(S))$: Set of functions from \mathbb{T}^{d} (resp. S) to \mathbb{R}.
- Lattice:

$$
B_{h}(x):=\prod_{i=1}^{d}\left[x-h e_{i} / 2, x+h e_{i} / 2\right), \quad \forall x \in S .
$$

Two operators.

- $\mathcal{I}_{h}: \mathbb{R}\left(\mathbb{T}^{d}\right) \rightarrow \mathbb{R}(S)$,

$$
\mathcal{I}_{h}\left(m^{c}\right)(x)=\int_{B_{h}(x)} m^{c}(y) d y, \quad \forall x \in S
$$

- $\mathcal{R}_{h}: \mathbb{R}(S) \rightarrow \mathbb{R}\left(\mathbb{T}^{d}\right)$,

$$
\mathcal{R}_{h}(m)(y)=\frac{m(x)}{h^{d}}, \quad \forall x \in S, y \in B_{h}(x)
$$

Discretization of the data of MFGs

- Running cost

$$
\ell(t, x, v):=\ell^{c}(t \Delta t, x, v)
$$

- Hamiltonian

$$
H(t, x, p):=H^{c}(t \Delta t, x, p) ;
$$

- Initial condition

$$
m_{0}(x):=\mathcal{I}_{h}\left(m_{0}^{c}\right)(x)
$$

- Terminal cost

$$
g(x):=g^{c}(x)
$$

- Congestion cost

$$
f(t, x, m):=\frac{1}{h^{d}} \int_{y \in B_{h}(x)} f^{c}\left(t \Delta t, y, \mathcal{R}_{h}(m)\right) d y
$$

Remark: Compared to [Achdou-Camilli-Capuzzo 2013], we do not introduce a "numerical" Hamiltonian for the discretization of Hamiltonian.

The θ-scheme of heat equation
Consider the heat equation in Q :

$$
\begin{cases}\frac{\partial m}{\partial t}(t, x)-\Delta m(t, x)=0, & (t, x) \in Q \tag{9}\\ m(0, x)=m_{0}(x), & x \in \mathbb{T}^{d}\end{cases}
$$

Let $\theta \in[0,1]$, the θ-scheme of (9): For all $t \in \mathcal{T}$,

$$
\frac{m(t+1)-m(t)}{\Delta t}-\theta \Delta_{h} m(t+1)-(1-\theta) \Delta_{h} m(t)=0 .
$$

Remark:

(1) $\theta=0$: The explicit scheme,

$$
\frac{m(t+1)-m(t)}{\Delta t}-\Delta_{h} m(t)=0 .
$$

(2) $\theta=1$: The implicit scheme,

$$
\frac{m(t+1)-m(t)}{\Delta t}-\Delta_{h} m(t+1)=0
$$

The θ-scheme of heat equation

The θ-scheme of (9): For all $t \in \mathcal{T}$,

$$
\frac{m(t+1)-m(t)}{\Delta t}-\theta \Delta_{h} m(t+1)-(1-\theta) \Delta_{h} m(t)=0
$$

It is equivalent to

$$
\begin{cases}\frac{m(t+1 / 2)-m(t)}{\Delta t}-(1-\theta) \Delta_{h} m(t) & =0 \\ \frac{m(t+1)-m(t+1 / 2)}{\Delta t}-\theta \Delta_{h} m(t+1) & =0\end{cases}
$$

where $m(t+1 / 2)$ is an auxiliary variable determined by $m(t)$.

The θ-scheme of (MFG): θ-MFG

(1) HJB equation:

$$
\left\{\begin{array}{l}
-\frac{u(t+1)-u(t+1 / 2)}{\Delta t}-\theta \sigma \Delta_{h} u(t+1 / 2)=0 \\
-\frac{u(t+1 / 2)-u(t)}{\Delta t}-(1-\theta) \sigma \Delta_{h} u(t+1 / 2)+H\left(\nabla_{h} u(t+1 / 2)\right)=f(m(t))
\end{array}\right.
$$

The θ-scheme of (MFG): θ-MFG

(1) HJB equation:

$$
\left\{\begin{array}{l}
-\frac{u(t+1)-u(t+1 / 2)}{\Delta t}-\theta \sigma \Delta_{h} u(t+1 / 2)=0 \\
-\frac{u(t+1 / 2)-u(t)}{\Delta t}-(1-\theta) \sigma \Delta_{h} u(t+1 / 2)+H\left(\nabla_{h} u(t+1 / 2)\right)=f(m(t))
\end{array}\right.
$$

(2) Optimal control:

$$
v(t, x)=-H_{p}\left(t, x, \nabla_{h} u(t+1 / 2, x)\right) .
$$

The θ-scheme of (MFG): θ-MFG

(1) HJB equation:

$$
\left\{\begin{array}{l}
-\frac{u(t+1)-u(t+1 / 2)}{\Delta t}-\theta \sigma \Delta_{h} u(t+1 / 2)=0 \\
-\frac{u(t+1 / 2)-u(t)}{\Delta t}-(1-\theta) \sigma \Delta_{h} u(t+1 / 2)+H\left(\nabla_{h} u(t+1 / 2)\right)=f(m(t))
\end{array}\right.
$$

(2) Optimal control:

$$
v(t, x)=-H_{p}\left(t, x, \nabla_{h} u(t+1 / 2, x)\right) .
$$

(3) Fokker-Planck equation:

$$
\left\{\begin{array}{l}
\frac{m(t+1 / 2)-m(t)}{\Delta t}-(1-\theta) \sigma \Delta_{h} m(t)+\operatorname{div}_{h}(m v(t))=0, \\
\frac{m(t+1)-m(t+1 / 2)}{\Delta t}-\theta \sigma \Delta_{h} m(t+1)=0
\end{array}\right.
$$

The θ-scheme of (MFG): θ-MFG

(1) HJB equation:

$$
\left\{\begin{array}{l}
-\frac{u(t+1)-u(t+1 / 2)}{\Delta t}-\theta \sigma \Delta_{h} u(t+1 / 2)=0 \\
-\frac{u(t+1 / 2)-u(t)}{\Delta t}-(1-\theta) \sigma \Delta_{h} u(t+1 / 2)+H\left(\nabla_{h} u(t+1 / 2)\right)=f(m(t))
\end{array}\right.
$$

(2) Optimal control:

$$
v(t, x)=-H_{p}\left(t, x, \nabla_{h} u(t+1 / 2, x)\right) .
$$

(3) Fokker-Planck equation:

$$
\left\{\begin{array}{l}
\frac{m(t+1 / 2)-m(t)}{\Delta t}-(1-\theta) \sigma \Delta_{h} m(t)+\operatorname{div}_{h}(m v(t))=0, \\
\frac{m(t+1)-m(t+1 / 2)}{\Delta t}-\theta \sigma \Delta_{h} m(t+1)=0 .
\end{array}\right.
$$

(9) Initial and terminal conditions:

$$
m(0, x)=m_{0}(x), \quad u(T, x)=g(x) .
$$

The CFL condition

Recall in Assumption A:
(1) L^{c} : the Lipschitz constant of the data;
(2) α^{c} : the strong-convexity constant of ℓ^{c} w.r.t. v.

Define a constant

$$
M=\frac{1}{\alpha^{c}}\left(2 \max _{(t, x) \in Q}\left\|\ell_{v}^{c}(t, x, 0)\right\|+3 \sqrt{d} L^{c}\right)
$$

The CFL condition of θ-MFG:

$$
\begin{equation*}
\Delta t \leq \frac{h^{2}}{2 d(1-\theta) \sigma}, \quad h \leq \frac{2(1-\theta) \sigma}{M} \tag{CFL}
\end{equation*}
$$

Main result

Let A_{1} and A_{2} be two finite sets and $\mu: A_{1} \times A_{2} \rightarrow \mathbb{R}$. Define

$$
\|\mu\|_{\infty, \infty}:=\max _{x \in A_{1}} \max _{y \in A_{2}}|\mu(x, y)|, \quad\|\mu\|_{\infty, 1}:=\max _{x \in A_{1}} \sum_{y \in A_{2}}|\mu(x, y)| .
$$

Main result

Let A_{1} and A_{2} be two finite sets and $\mu: A_{1} \times A_{2} \rightarrow \mathbb{R}$. Define

$$
\|\mu\|_{\infty, \infty}:=\max _{x \in A_{1}} \max _{y \in A_{2}}|\mu(x, y)|, \quad\|\mu\|_{\infty, 1}:=\max _{x \in A_{1}} \sum_{y \in A_{2}}|\mu(x, y)| .
$$

Theorem 2

Let Assumptions A and B hold true. Let $\theta \in(1 / 2,1)$ and let $(\Delta t, h)$ satisfy the condition (CFL). Then, θ-MFG has a unique solution $\left(u_{h}, v_{h}, m_{h}\right)$. Moreover, there exists a constant $C>0$, independent of Δt and h, such that

$$
\left\|u_{h}-u\right\|_{\infty, \infty}+\left\|m_{h}-m\right\|_{\infty, 1} \leq C h^{r}
$$

where $u(t):=u^{*}(t \Delta t)$ and where $m(t):=\mathcal{I}_{h}\left(m^{*}(t \Delta t)\right)$.

Table of Contents

(1) Introduction to second-order MFGs

(2) The Theta-scheme and the convergence result
(3) Numerical analysis

4 Conclusion and perspectives

Methodology of the numerical analysis

We introduce a general framework of discrete mean field games (DMFG) and

$$
\theta-\mathrm{MFG} \in(\mathrm{DMFG})
$$

Methodology of the numerical analysis

We introduce a general framework of discrete mean field games (DMFG) and

$$
\theta-\mathrm{MFG} \in(\mathrm{DMFG})
$$

Steps to study the convergence of θ-MFG:
(1) Existence and uniqueness.

Remark: We skip the part of (DMFG) in this presentation.

Methodology of the numerical analysis

We introduce a general framework of discrete mean field games (DMFG) and

$$
\theta-\mathrm{MFG} \in(\mathrm{DMFG}) .
$$

Steps to study the convergence of θ-MFG:
(1) Existence and uniqueness.

- Existence: Applying Brouwer's fixed point theorem to (DMFG);

Remark: We skip the part of (DMFG) in this presentation.

Methodology of the numerical analysis

We introduce a general framework of discrete mean field games (DMFG) and

$$
\theta-\mathrm{MFG} \in(\mathrm{DMFG}) .
$$

Steps to study the convergence of θ-MFG:
(1) Existence and uniqueness.

- Existence: Applying Brouwer's fixed point theorem to (DMFG);
- Uniqueness: A fundamental inequality.

Remark: We skip the part of (DMFG) in this presentation.

Methodology of the numerical analysis

We introduce a general framework of discrete mean field games (DMFG) and

$$
\theta-\mathrm{MFG} \in(\mathrm{DMFG}) .
$$

Steps to study the convergence of θ-MFG:
(1) Existence and uniqueness.

- Existence: Applying Brouwer's fixed point theorem to (DMFG);
- Uniqueness: A fundamental inequality.
(2) Stability analysis.

Remark: We skip the part of (DMFG) in this presentation.

Methodology of the numerical analysis

We introduce a general framework of discrete mean field games (DMFG) and

$$
\theta-\mathrm{MFG} \in(\mathrm{DMFG}) .
$$

Steps to study the convergence of θ-MFG:
(1) Existence and uniqueness.

- Existence: Applying Brouwer's fixed point theorem to (DMFG);
- Uniqueness: A fundamental inequality.
(2) Stability analysis.
- δu : Stability of the discrete HJB equation.

Remark: We skip the part of (DMFG) in this presentation.

Methodology of the numerical analysis

We introduce a general framework of discrete mean field games (DMFG) and

$$
\theta-\mathrm{MFG} \in(\mathrm{DMFG}) .
$$

Steps to study the convergence of θ-MFG:
(1) Existence and uniqueness.

- Existence: Applying Brouwer's fixed point theorem to (DMFG);
- Uniqueness: A fundamental inequality.
(2) Stability analysis.
- δu : Stability of the discrete HJB equation.
- $\|\delta v\|^{2} m$: A fundamental inequality.

Remark: We skip the part of (DMFG) in this presentation.

Methodology of the numerical analysis

We introduce a general framework of discrete mean field games (DMFG) and

$$
\theta-\mathrm{MFG} \in(\mathrm{DMFG}) .
$$

Steps to study the convergence of θ-MFG:
(1) Existence and uniqueness.

- Existence: Applying Brouwer's fixed point theorem to (DMFG);
- Uniqueness: A fundamental inequality.
(2) Stability analysis.
- δu : Stability of the discrete HJB equation.
- $\|\delta v\|^{2} m$: A fundamental inequality.
- δm : Energy inequality of a discrete parabolic equation.

Remark: We skip the part of (DMFG) in this presentation.

Methodology of the numerical analysis

We introduce a general framework of discrete mean field games (DMFG) and

$$
\theta-\mathrm{MFG} \in(\mathrm{DMFG}) .
$$

Steps to study the convergence of θ-MFG:
(1) Existence and uniqueness.

- Existence: Applying Brouwer's fixed point theorem to (DMFG);
- Uniqueness: A fundamental inequality.
(2) Stability analysis.
- δu : Stability of the discrete HJB equation.
- $\|\delta v\|^{2} m$: A fundamental inequality.
- δm : Energy inequality of a discrete parabolic equation.
(3) Consistency analysis.

Remark: We skip the part of (DMFG) in this presentation.

Methodology of the numerical analysis

We introduce a general framework of discrete mean field games (DMFG) and

$$
\theta-\mathrm{MFG} \in(\mathrm{DMFG}) .
$$

Steps to study the convergence of θ-MFG:
(1) Existence and uniqueness.

- Existence: Applying Brouwer's fixed point theorem to (DMFG);
- Uniqueness: A fundamental inequality.
(2) Stability analysis.
- δu : Stability of the discrete HJB equation.
- $\|\delta v\|^{2} m$: A fundamental inequality.
- δm : Energy inequality of a discrete parabolic equation.
(3) Consistency analysis.
- Regularity of (u^{*}, v^{*}, m^{*}) in Assumption B.

Remark: We skip the part of (DMFG) in this presentation.

A perturbed θ-scheme: θ-MFG (δ)

A perturbed version of θ-MFG with additional terms $\left(\delta_{1}, \delta_{2}\right)$:
(1) Perturbed HJB equation:

$$
\left\{\begin{array}{l}
-\frac{u(t+1)-u(t+1 / 2)}{\Delta t}-\theta \sigma \Delta_{h} u(t+1 / 2)=\delta_{1}(t) \\
-\frac{u(t+1 / 2)-u(t)}{\Delta t}-(1-\theta) \sigma \Delta_{h} u(t+1 / 2)+H\left(\nabla_{h} u(t+1 / 2)\right)=f(m(t))
\end{array}\right.
$$

(2) Optimal control:

$$
v(t, x)=-H_{p}\left(t, x, \nabla_{h} u(t+1 / 2, x)\right)
$$

(3) Perturbed Fokker-Planck equation:

$$
\left\{\begin{array}{l}
\frac{m(t+1 / 2)-m(t)}{\Delta t}-(1-\theta) \sigma \Delta_{h} m(t)+\operatorname{div}_{h}(m v(t))=0 \\
\frac{m(t+1)-m(t+1 / 2)}{\Delta t}-\theta \sigma \Delta_{h} m(t+1)=\delta_{2}(t)
\end{array}\right.
$$

(9) Initial and terminal conditions:

$$
m(0, x)=m_{0}(x), \quad u(T, x)=g(x)
$$

Stability analysis of θ-MFG: HJB equation

Suppose that $\left(u^{\delta}, v^{\delta}, m^{\delta}\right)$ satisfies $\theta-\operatorname{MFG}(\delta)$ and $m^{\delta} \geq 0$. Let $\left(u_{h}, v_{h}, m_{h}\right)$ be a solution of θ-MFG. Denote by

$$
\delta u=u^{\delta}-u_{h}, \quad \delta v=v^{\delta}-v_{h}, \quad \delta m=m^{\delta}-m_{h} .
$$

Lemma 1 (Stability of HJB)

Let Assumptions A and condition (CFL) hold true. Then,

$$
\|\delta u\|_{\infty, \infty} \leq \frac{L^{c}}{h^{d / 2}}\|\delta m\|_{\infty, 2}+\Delta t\left\|\delta_{1}\right\|_{1, \infty} .
$$

Recall:

$$
\|\mu\|_{\infty, 2}=\max _{x \in A_{1}}\|\mu(x, \cdot)\|_{\ell^{2}}, \quad\|\mu\|_{1, \infty}=\sum_{x \in A_{1}}\|\mu(x, \cdot)\|_{\ell \infty} .
$$

Stability analysis of θ-MFG: Fundamental inequality

Lemma 2 (Fundamental inequality)

Let Assumption A and condition (CFL) hold true. Then,

$$
\begin{aligned}
\frac{\alpha}{2} \sum_{t \in \mathcal{T}} \sum_{x \in S}\|\delta v(t, x)\|^{2}\left(m_{h}+m^{\delta}\right)(t, x) \leq & \sum_{t \in \mathcal{T}} \sum_{x \in S} \delta u(t+1, x) \delta_{2}(t, x) \\
& +\sum_{t \in \mathcal{T}} \sum_{x \in S} \delta m(t, x) \delta_{1}(t, x)
\end{aligned}
$$

Corollary: Scheme θ-MFG has a unique solution.

Remark: A similar fundamental equality is proved for an implicit scheme in [Achdou-Camilli-Capuzzo 2013]. A continuous version of this fundamental equality is given in [Cardaliaguet-Lasry-Lions-Porretta 2013].

Stability analysis of θ-MFG: Energy inequality

- Summing the two steps of the Fokker-Planck equation in θ-MFG,

$$
\frac{m(t+1)-m(t)}{\Delta t}-\theta \Delta_{h} m(t+1)-(1-\theta) \Delta_{h} m(t)+\operatorname{div}_{h} m v(t)=0
$$

- Let μ satisfy a perturbed Fokker-Planck equation:

$$
\left\{\begin{array}{l}
\frac{\mu(t+1)-\mu(t)}{\Delta t}-\theta \Delta_{h} \mu(t+1)-(1-\theta) \Delta_{h} \mu(t)+\operatorname{div}_{h} \mu v(t)=\operatorname{div}_{h} \eta_{1}(t)+\eta_{2}(t) \\
\mu(0)=0
\end{array}\right.
$$

Lemma 3 (Energy inequality)

Let $\theta>1 / 2$ and $\|v\|_{\infty, \infty} \leq M$. Then, there exists some constant c independent of h and Δt such that

$$
\|\mu\|_{\infty, 2}^{2} \leq c \Delta t \sum_{t \in \mathcal{T}}\left\|\eta_{1}(t)\right\|_{2}^{2}+\left\|\eta_{2}(t)\right\|_{2}^{2}
$$

Consistency error

Recall that $\left(u^{*}, v^{*}, m^{*}\right)$ is the solution of (MFG).

- Let $u(t)=u^{*}(t \Delta t)$ and $m(t)=\mathcal{I}_{h}\left(m^{*}(t \Delta t)\right)$.
- Compute the auxiliary variable $u(t+1 / 2)$ by

$$
-\frac{u(t+1)-u(t+1 / 2)}{\Delta t}-\theta \sigma \Delta_{h} u(t+1 / 2)=0
$$

- Let $v(t, x)=-H_{p}\left(t, x, \nabla_{h} u(t+1 / 2)\right)$.

Lemma 4 (Consistency error)

Let Assumption B and condition (CFL) hold. The triplet (u, v, m) is a solution to the perturbed system $\theta-\mathrm{MFG}(\delta)$, with perturbation terms satisfying

$$
\delta_{1}=\mathcal{O}\left(h^{r}\right), \delta_{2}=\operatorname{div}_{h} \eta_{1}+\eta_{2}, \eta_{1}=\mathcal{O}\left(h^{2 r+d}\right), \eta_{2}=\mathcal{O}\left(h^{r+d}\right)
$$

Sketch of the proof of Theorem 2

Recall the consistency error:

$$
\delta_{1}=\mathcal{O}\left(h^{r}\right), \delta_{2}=\operatorname{div}_{h} \eta_{1}+\eta_{2}, \eta_{1}=\mathcal{O}\left(h^{2 r+d}\right), \eta_{2}=\mathcal{O}\left(h^{r+d}\right) .
$$

Let $\epsilon=\Delta t \sum_{t \in \mathcal{T}} \sum_{x \in S}\|\delta v(t, x)\|^{2}\left(m_{h}+m\right)(t, x)$.

Sketch of the proof of Theorem 2

Recall the consistency error:

$$
\delta_{1}=\mathcal{O}\left(h^{r}\right), \delta_{2}=\operatorname{div}_{h} \eta_{1}+\eta_{2}, \eta_{1}=\mathcal{O}\left(h^{2 r+d}\right), \eta_{2}=\mathcal{O}\left(h^{r+d}\right)
$$

Let $\epsilon=\Delta t \sum_{t \in \mathcal{T}} \sum_{x \in S}\|\delta v(t, x)\|^{2}\left(m_{h}+m\right)(t, x)$.
(1) By the stability of the HJB equation,

$$
\|\delta u\|_{\infty, \infty} \leq C_{1}\left(\|\delta m\|_{\infty, 2} h^{-d / 2}+h^{r}\right)
$$

Sketch of the proof of Theorem 2

Recall the consistency error:

$$
\delta_{1}=\mathcal{O}\left(h^{r}\right), \delta_{2}=\operatorname{div}_{h} \eta_{1}+\eta_{2}, \eta_{1}=\mathcal{O}\left(h^{2 r+d}\right), \eta_{2}=\mathcal{O}\left(h^{r+d}\right)
$$

Let $\epsilon=\Delta t \sum_{t \in \mathcal{T}} \sum_{x \in S}\|\delta v(t, x)\|^{2}\left(m_{h}+m\right)(t, x)$.
(1) By the stability of the HJB equation,

$$
\|\delta u\|_{\infty, \infty} \leq C_{1}\left(\|\delta m\|_{\infty, 2} h^{-d / 2}+h^{r}\right)
$$

(2) By the fundamental inequality and the previous inequality,

$$
\epsilon \leq C_{2}\left(\|\delta m\|_{\infty, 2} h^{r-d / 2}+h^{2 r}\right)
$$

Sketch of the proof of Theorem 2

Recall the consistency error:

$$
\delta_{1}=\mathcal{O}\left(h^{r}\right), \delta_{2}=\operatorname{div}_{h} \eta_{1}+\eta_{2}, \eta_{1}=\mathcal{O}\left(h^{2 r+d}\right), \eta_{2}=\mathcal{O}\left(h^{r+d}\right)
$$

Let $\epsilon=\Delta t \sum_{t \in \mathcal{T}} \sum_{x \in S}\|\delta v(t, x)\|^{2}\left(m_{h}+m\right)(t, x)$.
(1) By the stability of the HJB equation,

$$
\|\delta u\|_{\infty, \infty} \leq C_{1}\left(\|\delta m\|_{\infty, 2} h^{-d / 2}+h^{r}\right)
$$

(2) By the fundamental inequality and the previous inequality,

$$
\epsilon \leq C_{2}\left(\|\delta m\|_{\infty, 2} h^{r-d / 2}+h^{2 r}\right)
$$

(3) By the energy inequality,

$$
\|\delta m\|_{\infty, 2}^{2} \leq C_{3} h^{d}\left(\epsilon+h^{2 r}\right)
$$

Sketch of the proof of Theorem 2

Recall the consistency error:

$$
\delta_{1}=\mathcal{O}\left(h^{r}\right), \delta_{2}=\operatorname{div}_{h} \eta_{1}+\eta_{2}, \eta_{1}=\mathcal{O}\left(h^{2 r+d}\right), \eta_{2}=\mathcal{O}\left(h^{r+d}\right)
$$

Let $\epsilon=\Delta t \sum_{t \in \mathcal{T}} \sum_{x \in S}\|\delta v(t, x)\|^{2}\left(m_{h}+m\right)(t, x)$.
(1) By the stability of the HJB equation,

$$
\|\delta u\|_{\infty, \infty} \leq C_{1}\left(\|\delta m\|_{\infty, 2} h^{-d / 2}+h^{r}\right)
$$

(2) By the fundamental inequality and the previous inequality,

$$
\epsilon \leq C_{2}\left(\|\delta m\|_{\infty, 2} h^{r-d / 2}+h^{2 r}\right)
$$

(3) By the energy inequality,

$$
\|\delta m\|_{\infty, 2}^{2} \leq C_{3} h^{d}\left(\epsilon+h^{2 r}\right)
$$

(4) Combining the previous two estimates, it follows:

$$
\|\delta m\|_{\infty, 2} \leq C_{4} h^{r+d / 2}
$$

Table of Contents

(1) Introduction to second-order MFGs

(2) The Theta-scheme and the convergence result
(3) Numerical analysis

4 Conclusion and perspectives

Conclusion and perspectives

Conclusion:

- We propose a θ-scheme of second-order MFGs and give its error estimates;
- We propose a general framework of discrete MFGs (not mentioned in this presentation) and give its stability analysis (essentially, the fundamental inequality).

Perspectives:

- Some numerical algorithms to solve θ-MFG (specially in potential case);
- Some "splitting" methods to reduce the complexity of computation in high dimensions, etc.

Some references

围 Y. Achdou, F. Camilli and I. Capuzzo-Dolcetta, Mean field games: convergence of a finite difference method, SIAM Journal on Numerical Analysis, 51(5):2585-2612, 2013.
E. Carlini and F.J. Silva. A fully discrete semi-Lagrangian scheme for a first order mean field game problem, SIAM Journal on Numerical Analysis, 52(1):45-67, 2014.
(R. Lavigne and L. Pfeiffer, Generalized conditional gradient and learning in potential mean field games, ArXiv preprint, 2022.
目 M. Germain et al. DeepSets and Their Derivative Networks for Solving Symmetric PDEs. Journal of Scientific Computing, 2022.

Thank You!

