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FSI problem of a body vibrating in a fluid

I Mechanics of plants and trees

I Understanding of animal swimming

I Energy harvesting from a flexible
structure

I Nuclear technology
I etc.

FIGURE – Left : sketch of the Jules Horowitz
Reactor (JHR). Right : axial cross section of
the JHR assembly cell.
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Definition of the problem
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FIGURE – Schematic diagram of the
system

I Two coaxial oscillating cylinders Cj with radii Rj
and length L

I Immersed in a fluid of kinematic viscosity ν

I Imposed displacement <
{

eiΩiTQi (X)
}

Qi(X) = QiWi (X) ey ,

Ωi the angular frequency,
Qi the amplitude of the displacement,
Wi(X) the bending mode of vibration of an
Euler-Bernoulli beam

Wi (X) = χ
(1)
i cosh (ΛiX) + χ

(2)
i cos (ΛiX)

+ χ
(3)
i sinh (ΛiX) + χ

(4)
i sin (ΛiX) .
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Governing equations

I Small amplitude of the displacement, i.e. Qi � R2 −R1.

I The flow expands as a linear combination of the form <

{
2∑
i=1

eiΩiT (Vi, Pi)

}
with (Vi, Pi) solution of

∇ ·Vi = 0,

iΩiVi +
1
ρ
∇Pi − ν∆Vi = 0,

Vi − iΩiQiWi = 0 on ∂Ci,

Vi = 0 on ∂Ci,
Pi = 0 at X = 0 and X = L.

I The fluid force on Ci due to the motion of Cj is <

{
2∑
j=1

eiΩjTFij

}
with

Fij = −
∫
∂Ci

PjnidSi + ρν

∫
∂Ci

[
∇Vj + (∇Vj)T

]
· nidSi.
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Governing equations

Dimensionless Euler equations and boundary conditions write

∇∗ · vi = 0,

ivi +∇∗pi −
1
Ski

∆∗vi = 0,

vi = iwiey on ∂Ci,

vi = 0 on ∂Ci,
pi = 0 at x = 0 and x = 1.

I x = X/L, t = TΩ, ki = KiL,

I Vi = QiΩivi, Pi = ρ (R2 −R1)QiΩi2pi, Fij = ρπRiLRjQjΩj2f ij ,

I Wi (X) = wi

(
X

L

)
ey ,

I ∇∗ = (R2 −R1)∇ and ∆∗ = (R2 −R1)2 ∆,

I Aspect ratio l =
L

R1
, radius ratio ε =

R2

R1
, Stokes number Sk =

(R2 −R1)2Ωi
ν

.
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New theoretical formulation



New theoretical formulation

I Helmholtz decomposition

vi = ∇∗φi +∇∗ × ψi.

I Dimensionless Euler equations yields

∆∗φi = 0,
∇∗ × (∆∗ψi − iSkiψi)− Ski∇∗ (iφi + pi) = 0.

I Taking the divergence and the curl yields

pi = −iφi,

∆∗ψi + βi
2ψi = 0 with βi =

√
−iSki.

I Dimensionless cylindrical coordinates (r, θ, x) and the associated physical basis
B = (er, eθ, ex).

I The boudary condition on ∂Ci, i.e. ∇∗φi +∇∗ × ψi = iwi(x)cos(θ) at r = ri,
suggests that φi and ψi shall be linear combinations of wi and dwi/dx.
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New theoretical formulation

I To fulfill the pressure boundary conditions, pi(0) = pi(1) = 0, wi is extend to an
odd function w̃i of period 2.

I The Fourier series of w̃i vanishes at x = 0 and x = 1 and

∀x ∈ ]0, 1[ , wi (x) = w̃i (x) =
∞∑
n=1

win (x) ,

with win = bin sin (nπx) and bin = 2
∫ 1

0
wi (x) sin (nπx) dx the n-th Fourier

coefficient.

FIGURE – Principle of the extension of w (black solid line) to an odd function w̃ (red dashed line) of
period 2.
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New theoretical formulation

I We seek fluid functions of the form (linear combinations of the Fourier harmonics
of the vibration modes win )

(φi,ψi) =
∞∑
n=1

(φin,ψin) ,

φin (r, θ, x) = Φin (r) cos (θ)win (x) ,

ψin (r, θ, x) =

(
0
0

Ψin (r) sin (θ)

)
win (x) +

ε− 1
l

(
Ain (r) sin (θ)
Ain (r) cos (θ)

0

)
dwin

dx
(x) ,

I Φin (r), Ψin (r), and Ain (r) are linear combinations of Hankel functions of the
first and second kind.

I Small displacement and deformation of the cylinders, i.e. ni ≈ (−1)i+1 er .

I The linear dimensionless fluid force is aligned with the direction of the motion.
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New theoretical formulation

⇒ The linear dimensionless fluid force writes fij = fijey with

fij (ε, l, Skj , wj) = (−1)i+1 (ε− 1) ε1−j
∞∑
n=1

i
[

Φjn (ri) +
γn2Φjn (ri)− αjn2Ψjn (ri)

γn2 − αjn2

]
wjn.

⇒ The dimensionless modal added mass and damping coefficients

C
(ij)
m − iC(ij)

v = 〈wj , fij〉.

� Full analytical expressions for the added mass and damping coefficients in still fluid.
� Depends on the radius ratio ε, the aspect ratio l, the Stokes number, Sk, and the

imposed vibration mode w.
� Applies for all classical boundary conditions of an Euler-Bernoulli beam.

R. Lagrange and M. A. Puscas
Viscous theory for the vibrations of coaxial cylinders. Analytical formulas for the
fluid forces and the modal added coefficients.
J. Appl. Mech, 2023
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First mode of a clamped-free beam
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FIGURE – Modal self-added mass and damping coefficients as functions of the aspect ratio, l, for
i = j = 1 (black) and i = j = 2 (red). The cylinder Cj vibrates in the first mode of a clamped-free
beam. The solid lines correspond to a Stokes number Skj = 250. The dashed lines (black and red
are indistinguishable) correspond to the inviscid limit Skj → ∞. The dotted lines correspond to the
limit of infinitely long cylinders, l → ∞, for Skj = 250. The radius ratio is ε = 1.1.
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Theory vs. Numerics



Clamped-free cylinders vibrating in the first mode

I Incompressible turbulent fluid solver : open source TrioCFD software.

I The FSI problem involving moving boundaries is solved using an Arbitrary
Lagrange-Eulerian method (ALE).

I Imposed a displacement of the form Q sin(ΩjT )w(X/Lj) with amplitude
Q = 5 · 10−5 [uol] (units of length) and a forcing frequency Ωj/(2π) = 10 [uof]
(units of frequency).

I First mode clamped-free vibration :
w (x) = cosh (λx)− cos (λx)−σ sinh (λx) +σ sin (λx), λ = 1.875 and σ = 0.734.

I The inner radius is R1 = 0.02 [uol] and the radius of the outer cylinder is
R2 = 0.022 [uol].

I The Stokes number is Skj = 250.
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Clamped-free cylinders vibrating in the first mode
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FIGURE – Modal self-added mass and damping coefficients as functions of the aspect ratio, l. The
cylinder C1 vibrates in the first mode of a clamped-free beam. The Stokes number is Sk1 = 250.
The radius ratio is ε = 1.1.
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Clamped-sliding cylinders
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FIGURE – Clamped-sliding case. Evolution of the dimensionless force coefficients, fii as a function
of the radius ratio, ε = R2/R1. The cylinder Ci vibrates in the three first modes of a
clamped-sliding beam. Continuous lines correspond to the new theoretical prediction. Dashed lines
correspond to the narrow gap prediction [Lagrange & Puscas, JFS, 2022]. Open circles correspond
to numerical simulations. The aspect ratio is l = 35.

Cylinders vibrating in a viscous fluid SMAI 2023

M. A. Puscas, R. Lagrange Page 15/17



Conclusions and perspectives

Conclusions :

I New theoretical formulation to estimate the modal fluid force and the added mass
and damping coefficients.

I Based on a Helmholtz expansion of the fluid velocity.

I Includes the viscous effects of the fluid so that added-damping is accounted.

I It applies to all sizes of the fluid gap.

I Accounts for the finite length of the cylinder.

I Covers all type of classical forced beam vibrations boundary conditions.

I Good agreement between the numerical simulations and the new theoretical
formulation.

Perspectives :

I Simulate and model the free oscillations of a slender confined structure in a still
fluid.

I Carry out parametric studies to determine new dimensionless scaling laws for
frequency and damping.

I Derive analytical developments to include the effect of axial fluid flow on the
added-coefficients.

I Determine linear stability properties of the coupled system.
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Thank you for your attention
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