11ème Biennale française des mathématiques appliquées et industrielles

Deterministic Optimal control on Riemannian manifolds under probability knowledge of the initial condition

$O. Jerhaoui^1$

¹INSA Rouen Normandie

Joint work with: H. Zidani and F. Jean

ECOLE DOCTORALE DE MATHEMATIQUES HADAMARD

Mai 22 - 26, 2023, Le Gosier, Guadeloupe.

1 Introduction

2 Setting of the problem

3 Main results

1 Introduction

- 2 Setting of the problem
- 3 Main results
- **4** Conclusion and perspectives

- Let M be a compact connected Riemannian manifold.
- Let TM be the tangent bundle of M.

- Let M be a compact connected Riemannian manifold.
- Let TM be the tangent bundle of M.
- We consider the following controlled system (T > 0 fixed, U compact)

$$\begin{cases} \dot{X}_s = f(X_s, u(s)), & s \in [t_0, T] \\ X_{t_0} = x_0 \sim \mu_0, \end{cases}$$
(1)

• $X \in M$ is the state variable and $u(.) \in U$ is the control.

- Let M be a compact connected Riemannian manifold.
- Let TM be the tangent bundle of M.
- We consider the following controlled system (T > 0 fixed, U compact)

$$\begin{cases} \dot{X}_s = f(X_s, u(s)), & s \in [t_0, T] \\ X_{t_0} = x_0 \sim \mu_0, \end{cases}$$
(1)

- $X \in M$ is the state variable and $u(.) \in U$ is the control.
- Standard hypotheses on the dynamics.

 $\begin{cases} f: M \times U \to TM \text{ is continuous and Lipschitz with respect to the state,} \\ \forall x \in M, \text{ the set of functions } f(.,U) := \{f(.,u) : u \in U\} \text{ is convex.} \end{cases}$

- Let M be a compact connected Riemannian manifold.
- Let TM be the tangent bundle of M.
- We consider the following controlled system (T > 0 fixed, U compact)

$$\begin{cases} \dot{X}_s = f(X_s, u(s)), & s \in [t_0, T] \\ X_{t_0} = x_0 \sim \mu_0, \end{cases}$$
(1)

- $X \in M$ is the state variable and $u(.) \in U$ is the control.
- Standard hypotheses on the dynamics.

 $\begin{cases} f: M \times U \to TM \text{ is continuous and Lipschitz with respect to the state,} \\ \forall x \in M, \text{ the set of functions } f(.,U) := \{f(.,u) \ : \ u \in U\} \text{ is convex.} \end{cases}$

• We denote $s \mapsto X_s^{t_0, x_0, u}$ a trajectory associated to (1).

- Let M be a compact connected Riemannian manifold.
- Let TM be the tangent bundle of M.
- We consider the following controlled system (T > 0 fixed, U compact)

$$\begin{cases} \dot{X}_s = f(X_s, u(s)), & s \in [t_0, T] \\ X_{t_0} = x_0 \sim \mu_0, \end{cases}$$
(1)

- $X \in M$ is the state variable and $u(.) \in U$ is the control.
- Standard hypotheses on the dynamics.

 $\begin{cases} f: M \times U \to TM \text{ is continuous and Lipschitz with respect to the state,} \\ \forall x \in M, \text{ the set of functions } f(.,U) := \{f(.,u) \ : \ u \in U\} \text{ is convex.} \end{cases}$

- We denote $s \mapsto X_s^{t_0, x_0, u}$ a trajectory associated to (1).
- x_0 is not perfectly known. It is distributed along a Borel probability measure μ_0 .

- Let M be a compact connected Riemannian manifold.
- Let TM be the tangent bundle of M.
- We consider the following controlled system (T > 0 fixed, U compact)

$$\begin{cases} \dot{X}_s = f(X_s, u(s)), & s \in [t_0, T] \\ X_{t_0} = x_0 \sim \mu_0, \end{cases}$$
(1)

- $X \in M$ is the state variable and $u(.) \in U$ is the control.
- Standard hypotheses on the dynamics.

 $\begin{cases} f: M \times U \to TM \text{ is continuous and Lipschitz with respect to the state,} \\ \forall x \in M, \text{ the set of functions } f(.,U) := \{f(.,u) : u \in U\} \text{ is convex.} \end{cases}$ • We denote $s \mapsto X_s^{t_0, x_0, u}$ a trajectory associated to (1).

- x_0 is not perfectly known. It is distributed along a Borel probability measure μ_0 .
- We consider the following optimal control problem:

 $\vartheta(t_0,\mu_0) := \begin{cases} \min \int_M \ell(X_T^{t_0,x_0,u}) d\mu_0(x_0), \\ \text{such that (1) holds.} \end{cases}, \ \vartheta \text{ is the value function.} \end{cases}$

4 / 22

► Denote $\mathcal{P}(M)$ the space of Borel probability measure of M: $\mathcal{P}(M) := \{\mu \ge 0 : \text{ Borel measure such that } \mu(M) = 1\}.$

- Denote $\mathcal{P}(M)$ the space of Borel probability measure of M: $\mathcal{P}(M) := \{\mu \ge 0 : \text{ Borel measure such that } \mu(M) = 1\}.$
- The pushforward measure of $\mu \in \mathcal{P}(M)$ by a Borel measurable map $g: M \to Y$, where Y is a topological space is

 $g \sharp \mu \in \mathcal{P}(Y) : \forall h : Y \to \mathbb{R} \text{ Borel, bounded, } \int_M h \, d(g \sharp \mu) = \int_M h \circ g \, d\mu$

- Denote $\mathcal{P}(M)$ the space of Borel probability measure of M: $\mathcal{P}(M) := \{\mu \ge 0 : \text{ Borel measure such that } \mu(M) = 1\}.$
- The pushforward measure of $\mu \in \mathcal{P}(M)$ by a Borel measurable map $g: M \to Y$, where Y is a topological space is $g \sharp \mu \in \mathcal{P}(Y) : \forall h: Y \to \mathbb{R}$ Borel, bounded, $\int_M h \, d(g \sharp \mu) = \int_M h \circ g \, d\mu$
- The controlled system (1) could be seen as

 $\begin{cases} \mu_t^{t_0,\mu_0,u} = X_t^{t_0,\cdot,u} \sharp \mu_0, & t \in [t_0,T], \text{ and } x \mapsto X_t^{t_0,x,u} \text{ is the flow of (1),} \\ \mu_{t_0}^{t_0,\mu_0,u} = \mu_0. \end{cases}$

- Denote $\mathcal{P}(M)$ the space of Borel probability measure of M: $\mathcal{P}(M) := \{\mu \ge 0 : \text{ Borel measure such that } \mu(M) = 1\}.$
- ► The pushforward measure of $\mu \in \mathcal{P}(M)$ by a Borel measurable map $g: M \to Y$, where Y is a topological space is $g \sharp \mu \in \mathcal{P}(Y) : \forall h: Y \to \mathbb{R}$ Borel, bounded, $\int_M h \, d(g \sharp \mu) = \int_M h \circ g \, d\mu$
- The controlled system (1) could be seen as

 $\begin{cases} \mu_t^{t_0,\mu_0,u} = X_t^{t_0,\cdot,u} \sharp \mu_0, & t \in [t_0,T], \text{ and } x \mapsto X_t^{t_0,x,u} \text{ is the flow of (1),} \\ \mu_{t_0}^{t_0,\mu_0,u} = \mu_0. \end{cases}$

The value function is

$$\vartheta(t_0,\mu_0) = \begin{cases} \min \int_M \ell(X_T^{t_0,x_0,u}) d\mu_0(x_0), \\ \text{such that (1) holds.} \end{cases} = \begin{cases} \min \int_M \ell \, d\mu_T^{t_0,\mu_0,u}, \\ \text{such that } \mu_T^{t_0,\mu_0,u} = X_T^{t_0,\cdot,u} \sharp \mu_0 \end{cases}$$

1 Introduction

2 Setting of the problem

3 Main results

4 Conclusion and perspectives

The controlled system in $\mathcal{P}(M)$

 $\begin{cases} \mu_t^{t_0,\mu_0,u} = X_t^{t_0,\cdot,u} \sharp \mu_0, & t \in [t_0,T], \text{ and } x \mapsto X_t^{t_0,x,u} \text{ is the flow of } (1), \\ \mu_{t_0}^{t_0,\mu_0,u} = \mu_0. \end{cases}$

The value function is

$$\vartheta(t_0, \mu_0) = \begin{cases} \min \int_M \ell \, d\mu_T^{t_0, \mu_0, u}, \\ \text{such that } \mu_T^{t_0, \mu_0, u} = X_T^{t_0, \cdot, u} \sharp \mu_0. \end{cases}$$

The controlled system in $\mathcal{P}(M)$

 $\begin{cases} \mu_t^{t_0,\mu_0,u} = X_t^{t_0,\cdot,u} \sharp \mu_0, & t \in [t_0,T], \text{ and } x \mapsto X_t^{t_0,x,u} \text{ is the flow of } (1), \\ \mu_{t_0}^{t_0,\mu_0,u} = \mu_0. \end{cases}$

principle

The value function is

7

$$\vartheta(t_0, \mu_0) = \begin{cases} \min \int_M \ell \, d\mu_T^{t_0, \mu_0, u}, \\ \text{such that } \mu_T^{t_0, \mu_0, u} = X_T^{t_0, \cdot, u} \sharp \mu_0. \end{cases}$$

Does the value function satisfy a dynamic programming

The controlled system in $\mathcal{P}(M)$

 $\begin{cases} \mu_t^{t_0,\mu_0,u} = X_t^{t_0,.,u} \sharp \mu_0, & t \in [t_0,T], \text{ and } x \mapsto X_t^{t_0,x,u} \text{ is the flow of } (1), \\ \mu_{t_0}^{t_0,\mu_0,u} = \mu_0. \end{cases}$

The value function is

$$\vartheta(t_0, \mu_0) = \begin{cases} \min \int_M \ell \, d\mu_T^{t_0, \mu_0, u}, \\ \text{such that } \mu_T^{t_0, \mu_0, u} = X_T^{t_0, \cdot, u} \sharp \mu_0. \end{cases}$$

7?

Does the value function satisfy a dynamic programming principle?

We want to characterize the value function as the unique viscosity solution of an HJB equation of the form

$$\begin{cases} \partial_t v + H(\mu, D_\mu v) = 0, \quad (t, \mu) \in [0, T) \times \mathcal{P}(M), \\ v(T, \mu) = \int_M \ell \, d\mu. \end{cases}$$
(3)

The controlled system in $\mathcal{P}(M)$

 $\begin{cases} \mu_t^{t_0,\mu_0,u} = X_t^{t_0,\cdot,u} \sharp \mu_0, & t \in [t_0,T], \text{ and } x \mapsto X_t^{t_0,x,u} \text{ is the flow of } (1), \\ \mu_{t_0}^{t_0,\mu_0,u} = \mu_0. \end{cases}$

The value function is

$$\vartheta(t_0, \mu_0) = \begin{cases} \min \int_M \ell \, d\mu_T^{t_0, \mu_0, u}, \\ \text{such that } \mu_T^{t_0, \mu_0, u} = X_T^{t_0, \cdot, u} \sharp \mu_0. \end{cases}$$

%?

Does the value function satisfy a dynamic programming principle?

We want to characterize the value function as the unique viscosity solution of an HJB equation of the form

$$\begin{cases} \partial_t v + H(\mu, D_\mu v) = 0, \quad (t, \mu) \in [0, T) \times \mathcal{P}(M), \\ v(T, \mu) = \int_M \ell \, d\mu. \end{cases}$$
(3)

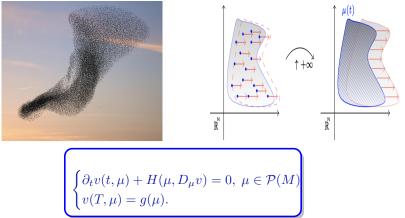
How to define the Hamiltonian? How to define viscosity notion?

How can we define the derivative $D_{\mu}v$?

The state space in now the space $\mathcal{P}(M)$.

$$\begin{cases} \partial_t v(t,\mu) + H(\mu, D_\mu v) = 0, \ \mu \in \mathcal{P}(M) \\ v(T,\mu) = g(\mu). \end{cases}$$

- The state space in now the space $\mathcal{P}(M)$.
 - Many other interesting applications take place in the space $\mathcal{P}(M)$.
- Multi-agent systems:



Imperfect information on the initial condition

• Deterministic differential games with imperfect information on the initial condition on the space $\mathcal{P}(\mathbb{R}^d)$ done by Quincampoix, Cardaliaguet, ...

Multi-agent systems

• General optimal control problem on the space $\mathcal{P}(\mathbb{R}^d)$ done by Bonnet, Rossi, Frankowska, Marigonda, Quincampoix, Cardaliaguet, Jimenez, Piccoli, ...

Imperfect information on the initial condition

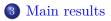
• Deterministic differential games with imperfect information on the initial condition on the space $\mathcal{P}(\mathbb{R}^d)$ done by Quincampoix, Cardaliaguet, ...

Multi-agent systems

- General optimal control problem on the space $\mathcal{P}(\mathbb{R}^d)$ done by Bonnet, Rossi, Frankowska, Marigonda, Quincampoix, Cardaliaguet, Jimenez, Piccoli, ...
- General theory of viscosity solutions on $\mathcal{P}(M)$: **not done yet.**

1 Introduction

2 Setting of the problem



4 Conclusion and perspectives

Dynamic programming

• The controlled system in $\mathcal{P}(M)$

 $\begin{cases} \mu_t^{t_0,\mu_0,u} = X_t^{t_0,\cdot,u} \sharp \mu_0, & t \in [t_0,T], \text{ and } x \mapsto X_t^{t_0,x,u} \text{ is the flow of } (1), \\ \mu_{t_0}^{t_0,\mu_0,u} = \mu_0. \end{cases}$

The value function is

$$\vartheta(t_0, \mu_0) = \begin{cases} \min \int_M \ell \, d\mu_T^{t_0, \mu_0, u}, \\ \text{such that } \mu_T^{t_0, \mu_0, u} = X_T^{t_0, \cdot, u} \sharp \mu_0. \end{cases}$$

Dynamic programming

• The controlled system in $\mathcal{P}(M)$

 $\begin{cases} \mu_t^{t_0,\mu_0,u} = X_t^{t_0,\cdot,u} \sharp \mu_0, & t \in [t_0,T], \text{ and } x \mapsto X_t^{t_0,x,u} \text{ is the flow of } (1), \\ \mu_{t_0}^{t_0,\mu_0,u} = \mu_0. \end{cases}$

The value function is

$$\vartheta(t_0, \mu_0) = \begin{cases} \min \int_M \ell \, d\mu_T^{t_0, \mu_0, u}, \\ \text{such that } \mu_T^{t_0, \mu_0, u} = X_T^{t_0, \cdot, u} \sharp \mu_0. \end{cases}$$

Theorem (Dynamic programming) Let $\mu \in \mathcal{P}(M)$, $t \in [0, T]$ and $h \in [0, T - t]$. Then it holds $\vartheta(t, \mu) = \inf_{u(.) \in U} \{ \vartheta(t + h, \mu_{t+h}^{t,\mu,u}) \}.$

Let (Y, d_Y) be a Polish space (i.e. complete and separable metric space).
Define

$$\mathcal{P}_2(Y) := \{ \mu \in \mathcal{P}(Y) : \int_Y d_Y^2(x, x_0) d\mu(x) < \infty, \quad \forall \, x_0 \in Y \, \}.$$

Let (Y, d_Y) be a Polish space (i.e. complete and separable metric space).
 Define

$$\mathcal{P}_{2}(Y) := \{ \mu \in \mathcal{P}(Y) : \int_{Y} d_{Y}^{2}(x, x_{0}) d\mu(x) < \infty, \quad \forall x_{0} \in Y \}.$$

• The Wasserstein space $(\mathcal{P}_2(Y), d_W)$ is the set $\mathcal{P}_2(Y)$ equipped with the distance $d_W^2(\mu, \nu) := \inf_{\gamma} \Big\{ \int_{Y \times Y} d_Y^2(x, y) d\gamma(x, y) \Big\},$

with $\gamma \in \mathcal{P}(Y \times Y)$ such that $\pi^1 \sharp \gamma = \mu$ and $\pi^2 \sharp \gamma = \nu$.

Let (Y, d_Y) be a Polish space (i.e. complete and separable metric space).
 Define

$$\mathcal{P}_{2}(Y) := \{ \mu \in \mathcal{P}(Y) : \int_{Y} d_{Y}^{2}(x, x_{0}) d\mu(x) < \infty, \quad \forall x_{0} \in Y \}.$$

The Wasserstein space $(\mathcal{P}_2(Y), d_W)$ is the set $\mathcal{P}_2(Y)$ equipped with the distance

$$d^2_W(\mu,\nu) := \inf_{\gamma} \Big\{ \int_{Y \times Y} d^2_Y(x,y) d\gamma(x,y) \Big\},$$

with $\gamma \in \mathcal{P}(Y \times Y)$ such that $\pi^1 \sharp \gamma = \mu$ and $\pi^2 \sharp \gamma = \nu$.

• If Y is compact then $\mathcal{P}(Y) = \mathcal{P}_2(Y)$ and $\mathcal{P}(Y)$ is compact.

Let (Y, d_Y) be a Polish space (i.e. complete and separable metric space).
 Define

$$\mathcal{P}_{2}(Y) := \{ \mu \in \mathcal{P}(Y) : \int_{Y} d_{Y}^{2}(x, x_{0}) d\mu(x) < \infty, \quad \forall x_{0} \in Y \}.$$

• The Wasserstein space $(\mathcal{P}_2(Y), d_W)$ is the set $\mathcal{P}_2(Y)$ equipped with the distance

$$d_W^2(\mu,\nu) := \inf_{\gamma} \Big\{ \int_{Y imes Y} d_Y^2(x,y) d\gamma(x,y) \Big\},$$

with $\gamma \in \mathcal{P}(Y \times Y)$ such that $\pi^1 \sharp \gamma = \mu$ and $\pi^2 \sharp \gamma = \nu$.

- If Y is compact then $\mathcal{P}(Y) = \mathcal{P}_2(Y)$ and $\mathcal{P}(Y)$ is compact.
- If (Y, d_Y) is Polish, then $(\mathcal{P}_2(Y), d_W)$ is Polish.

Let (Y, d_Y) be a Polish space (i.e. complete and separable metric space).
 Define

$$\mathcal{P}_{2}(Y) := \{ \mu \in \mathcal{P}(Y) : \int_{Y} d_{Y}^{2}(x, x_{0}) d\mu(x) < \infty, \quad \forall x_{0} \in Y \}.$$

• The Wasserstein space $(\mathcal{P}_2(Y), d_W)$ is the set $\mathcal{P}_2(Y)$ equipped with the distance

$$d_W^2(\mu,\nu) := \inf_{\gamma} \Big\{ \int_{Y \times Y} d_Y^2(x,y) d\gamma(x,y) \Big\},$$

with $\gamma \in \mathcal{P}(Y \times Y)$ such that $\pi^1 \sharp \gamma = \mu$ and $\pi^2 \sharp \gamma = \nu$.

- If Y is compact then $\mathcal{P}(Y) = \mathcal{P}_2(Y)$ and $\mathcal{P}(Y)$ is compact.
- If (Y, d_Y) is Polish, then $(\mathcal{P}_2(Y), d_W)$ is Polish.
- If (Y, d_Y) is a geodesic space, then $(\mathcal{P}_2(Y), d_W)$ is a geodesic space.

- ▶ (M, d_M) and (TM, d_{TM}) are Riemannian manifolds and equipped with their Riemannian distances
- We can define the Wasserstein spaces $\mathcal{P}_2(M)$ and $\mathcal{P}_2(TM)$.
- ▶ $\mathcal{P}_2(M)$ and $\mathcal{P}_2(TM)$ are Polish and geodesic spaces.
- Since M is compact then $\mathcal{P}_2(M) = \mathcal{P}(M)$ and $\mathcal{P}(M)$ is compact.

- ▶ (M, d_M) and (TM, d_{TM}) are Riemannian manifolds and equipped with their Riemannian distances
- We can define the Wasserstein spaces $\mathcal{P}_2(M)$ and $\mathcal{P}_2(TM)$.
- ▶ $\mathcal{P}_2(M)$ and $\mathcal{P}_2(TM)$ are Polish and geodesic spaces.
- Since M is compact then $\mathcal{P}_2(M) = \mathcal{P}(M)$ and $\mathcal{P}(M)$ is compact.
- There is a formal Riemannian-like structure on $\mathcal{P}(M)^1$.

- (M, d_M) and (TM, d_{TM}) are Riemannian manifolds and equipped with their Riemannian distances
- We can define the Wasserstein spaces $\mathcal{P}_2(M)$ and $\mathcal{P}_2(TM)$.
- ▶ $\mathcal{P}_2(M)$ and $\mathcal{P}_2(TM)$ are Polish and geodesic spaces.
- Since M is compact then $\mathcal{P}_2(M) = \mathcal{P}(M)$ and $\mathcal{P}(M)$ is compact.
- There is a formal Riemannian-like structure on $\mathcal{P}(M)^1$.

Rough idea

- $\mathcal{P}_2(TM)$ plays the role of the tangent bundle of $\mathcal{P}(M)$.
- What plays the role of the "tangent space" at a point $\mu \in \mathcal{P}(M)$ is $\mathcal{P}_2(TM)_{\mu} := \Big\{ \gamma \in \mathcal{P}_2(TM) : \pi^M \sharp \gamma = \mu \Big\},$

 $\pi^M: TM \to M$ is the canonical projection.

 $^{^1\}mathrm{References:}$ Lott and Villani (2009), Sturm (2006), Ohta (2009), Gigli (2011),...

Hamiltonian in Wasserstein space

The dynamical system in $\mathcal{P}(M)$

 $\begin{cases} \mu_t^{t_0,\mu_0,u} = X_t^{t_0,.,u} \sharp \mu_0, & t \in [t_0,T], \text{ and } x \mapsto X_t^{t_0,x,u} \text{ is the flow of } (1), \\ \mu_{t_0}^{t_0,\mu_0,u} = \mu_0. \end{cases}$

What is the dynamics of the controlled system?

Hamiltonian in Wasserstein space

The dynamical system in $\mathcal{P}(M)$

 $\begin{cases} \mu_t^{t_0,\mu_0,u} = X_t^{t_0,\cdot,u} \sharp \mu_0, & t \in [t_0,T], \text{ and } x \mapsto X_t^{t_0,x,u} \text{ is the flow of } (1), \\ \mu_{t_0}^{t_0,\mu_0,u} = \mu_0. \end{cases}$

What is the dynamics of the controlled system?

The trajectories $t \mapsto \mu_t^{t_0,\mu_0,u}$ morally have the velocity $\dot{\mu}_t^{t_0,\mu_0,u} = f(.,u(t)) \sharp \mu_t^{t_0,x_0,u} \in \mathcal{P}_2(TM)_{\mu_t^{t_0,\mu_0,u}}.$

Hamiltonian in Wasserstein space

The dynamical system in $\mathcal{P}(M)$

 $\begin{cases} \mu_t^{t_0,\mu_0,u} = X_t^{t_0,\cdot,u} \sharp \mu_0, & t \in [t_0,T], \text{ and } x \mapsto X_t^{t_0,x,u} \text{ is the flow of } (1), \\ \mu_{t_0}^{t_0,\mu_0,u} = \mu_0. \end{cases}$

What is the dynamics of the controlled system?

• The trajectories $t \mapsto \mu_t^{t_0,\mu_0,u}$ morally have the velocity $\dot{\mu}_t^{t_0,\mu_0,u} = f(.,u(t)) \sharp \mu_t^{t_0,x_0,u} \in \mathcal{P}_2(TM)_{\mu_t^{t_0,\mu_0,u}}.$

• Thus the Hamiltonian is chosen to be of the following form $H(\mu, D_{\mu}v) := \sup_{u \in U} \{ -D_{\mu}v \cdot (f(., u) \sharp \mu) \}.$

Hamiltonian in Wasserstein space

The dynamical system in $\mathcal{P}(M)$

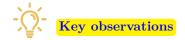
 $\begin{cases} \mu_t^{t_0,\mu_0,u} = X_t^{t_0,\cdot,u} \sharp \mu_0, & t \in [t_0,T], \text{ and } x \mapsto X_t^{t_0,x,u} \text{ is the flow of } (1), \\ \mu_{t_0}^{t_0,\mu_0,u} = \mu_0. \end{cases}$

What is the dynamics of the controlled system?

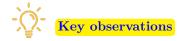
The trajectories $t \mapsto \mu_t^{t_0,\mu_0,u}$ morally have the velocity $\dot{\mu}_t^{t_0,\mu_0,u} = f(.,u(t)) \sharp \mu_t^{t_0,x_0,u} \in \mathcal{P}_2(TM)_{\mu_t^{t_0,\mu_0,u}}.$

Thus the Hamiltonian is chosen to be of the following form $H(\mu, D_{\mu}v) := \sup_{u \in U} \{ -D_{\mu}v \cdot (f(., u) \sharp \mu) \}.$

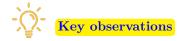
How can we define the derivative $D_{\mu}v$? How to define viscosity?



• When the state space is M, the test functions used are C^1 .



- When the state space is M, the test functions used are C^1 .
- We cannot define C^1 functions on $\mathcal{P}(M)$ because there isn't any smooth structure on it.



- When the state space is M, the test functions used are C^1 .
- We cannot define C^1 functions on $\mathcal{P}(M)$ because there isn't any smooth structure on it.
- However, for Hamiltonians of the type

 $H(\mu, D_{\mu}v) = \inf_{u \in U} \{ D_{\mu}v \cdot (f(., u)\sharp\mu) \} \quad \mu \in \mathcal{P}(M),$

we only need directional derivatives

• We take test functions on $\mathcal{P}(M)$ to be directionally differentiable everywhere.

Definition (Semiconvex/semiconcave/DC function) Let $F: \mathcal{P}(M) \to \mathbb{R}$ be a function.

- We say that F is semiconvex if there exists $\lambda \in \mathbb{R}$ such that for every geodesic $\alpha : [0,1] \to \mathcal{P}(M)$ the following inequality holds $F(\alpha_t) \leq (1-t)F(\alpha_0) + tF(\alpha_1) - \frac{\lambda}{2}t(1-t)d_W^2(\alpha_0,\alpha_1).$
- Let $F : \mathcal{P}_2(M) \to \mathbb{R}$ be a function. We say that F is semiconcave if -F is semiconvex.
- ▶ We say that *F* is DC if it can be represented as a difference of semiconvex functions

Definition (Semiconvex/semiconcave/DC function) Let $F : \mathcal{P}(M) \to \mathbb{R}$ be a function.

- We say that F is semiconvex if there exists $\lambda \in \mathbb{R}$ such that for every geodesic $\alpha : [0,1] \to \mathcal{P}(M)$ the following inequality holds $F(\alpha_t) \leq (1-t)F(\alpha_0) + tF(\alpha_1) - \frac{\lambda}{2}t(1-t)d_W^2(\alpha_0,\alpha_1).$
- Let $F : \mathcal{P}_2(M) \to \mathbb{R}$ be a function. We say that F is semiconcave if -F is semiconvex.
- ▶ We say that *F* is DC if it can be represented as a difference of semiconvex functions

Theorem (Differentiation of DC functions) Let $F : \mathcal{P}(M) \to \mathbb{R}$ be a Lipschitz and DC function. Then F admits directional derivatives everywhere. We say that F is differentiable and we denote the differential by $D_{\mu}F$.

Theorem (Squared Wasserstein distance) Let $\sigma \in \mathcal{P}(M)$. The function $\mu \mapsto d_W^2(\mu, \sigma)$ is semiconcave. Hence it admits directional derivatives everywhere.

Theorem (Squared Wasserstein distance) Let $\sigma \in \mathcal{P}(M)$. The function $\mu \mapsto d_W^2(\mu, \sigma)$ is semiconcave. Hence it admits directional derivatives everywhere.

Definition (Test functions)
▶ Let *TEST*₁ be the set defined as

 $\mathcal{TEST}_1 := \{(t,\mu) \mapsto \psi(t) + a \, d_W^2(\mu,\sigma) : \ a \in \mathbb{R}^+, \sigma \in \mathcal{P}(M) \text{ and } \psi \in C^1\}$

Let \mathcal{TEST}_2 be the set defined as

 $\mathcal{TEST}_2 := \{(t,\mu) \mapsto \psi(t) - a \, d^2_W(\mu,\sigma) : \ a \in \mathbb{R}^+, \sigma \in \mathcal{P}(M) \text{ and } \psi \in C^1\}$

Theorem (Squared Wasserstein distance) Let $\sigma \in \mathcal{P}(M)$. The function $\mu \mapsto d_W^2(\mu, \sigma)$ is semiconcave. Hence it admits directional derivatives everywhere.

Definition (Test functions)
▶ Let *TEST*₁ be the set defined as

 $\mathcal{TEST}_1 := \{(t,\mu) \mapsto \psi(t) + a \, d^2_W(\mu,\sigma) : \ a \in \mathbb{R}^+, \sigma \in \mathcal{P}(M) \text{ and } \psi \in C^1\}$

• Let \mathcal{TEST}_2 be the set defined as

 $\mathcal{TEST}_2 := \{(t,\mu) \mapsto \psi(t) - a \, d^2_W(\mu,\sigma) : \ a \in \mathbb{R}^+, \sigma \in \mathcal{P}(M) \text{ and } \psi \in C^1\}$

Remarks

- \mathcal{TEST}_1 functions are semiconcave with respect to the measure.
- $TEST_2$ functions are semiconvex with respect to the measure.

Definition (Viscosity solutions)

► An u.s.c. function $v : [0,T] \times \mathcal{P}(M) \to \mathbb{R}$ is a viscosity **subsolution** if for all $\phi \in \mathcal{TEST}_1$ such that $v - \phi$ attains a local **max** at (t, μ) we have:

$$-\partial_t \phi + H(\mu, D_\mu \phi) \le 0.$$

► A l.s.c. function $v : [0, T] \times \mathcal{P}(M) \to \mathbb{R}$ is a viscosity **supersolution** if for all $\phi \in \mathcal{TEST}_2$ such that $v - \phi$ attains a local **min** at (t, μ) we have:

$$-\partial_t \phi + H(\mu, D_\mu \phi) \ge 0.$$

 A continuous function v is said to be a viscosity solution, if it is both a supersolution and a subsolution and verifies the final condition

$$v(T,\mu) = \int_M \ell \, d\mu, \quad \forall \mu \in \mathcal{P}(M).$$

Comparison principle, Well-posedness

Theorem (Comparison principle) Let $v, w : [0,T] \times \mathcal{P}_2(M) \to \mathbb{R}$ be respectively a bounded upper semicontinuous subsolution and a bounded lower semicontinuous supersolution on $[0,T] \times \mathcal{P}(M)$. Then it holds:

$$\sup_{[0,T] \times \mathcal{P}_2(M)} (v - w)_+ \le \sup_{\{T\} \times \mathcal{P}_2(M)} (v - w)_+,$$

where $(k)_{+} = \max(k, 0)$.

Comparison principle, Well-posedness

Theorem (Comparison principle) Let $v, w : [0,T] \times \mathcal{P}_2(M) \to \mathbb{R}$ be respectively a bounded upper semicontinuous subsolution and a bounded lower semicontinuous supersolution on $[0,T] \times \mathcal{P}(M)$. Then it holds:

$$\sup_{[0,T] \times \mathcal{P}_2(M)} (v - w)_+ \le \sup_{\{T\} \times \mathcal{P}_2(M)} (v - w)_+,$$

where $(k)_{+} = \max(k, 0)$.

Theorem (Well-posedness)

The value function ϑ is the unique continuous viscosity solution to

$$\begin{cases} \partial_t v + H(\mu, D_\mu v) = 0, \quad (t, \mu) \in [0, T) \times \mathcal{P}(M), \\ v(T, \mu) = \int_M \ell \, d\mu. \end{cases}$$

1 Introduction

2 Setting of the problem

3 Main results

Conclusion and perspectives

What is done?

- We defined a new notion of viscosity for Hamilton Jacobi Bellman equations in presence of imperfect information on the initial condition to guarantee well-posedness.
- We defined a framework to study more general Hamilton Jacobi equations in $\mathcal{P}(M)$.

Future work

- Continue the work on more general Hamilton Jacobi equations on $\mathcal{P}(M)$.
- Study more general optimal control problems in $\mathcal{P}(M)$.
- Extend this work to $\mathcal{P}(\mathbb{R}^N)$. (O.J, A. Prost, H. Zidani)
- Extend this notion of viscosity to other metric spaces. (O.J, H. Zidani)

Thank you for your attention!!!