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Introduction: optimal control problem

▶ Let M be a compact connected Riemannian manifold.
▶ Let TM be the tangent bundle of M .

▶ We consider the following controlled system (T > 0 fixed, U compact){
Ẋs = f(Xs, u(s)), s ∈ [t0, T ]
Xt0 = x0 ∼ µ0,

(1)

X� ∈ M is the state variable and u(.) ∈ U is the control.
Standard hypotheses on the dynamics.{

f : M × U → TM is continuous and Lipschitz with respect to the state,
∀x ∈ M, the set of functions f(., U) := {f(., u) : u ∈ U} is convex.

We denote s 7→ Xt0,x0,u
s a trajectory associated to (1).

x0 is not perfectly known. It is distributed along a Borel
probability measure µ0.

▶ We consider the following optimal control problem:

ϑ(t0, µ0) :=

min
ˆ

M

ℓ(Xt0,x0,u
T )dµ0(x0),

such that (1) holds.
, ϑ is the value function.

(2)
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Introduction: optimal control problem

▶ Denote P(M) the space of Borel probability measure of M :

P(M) := {µ ≥ 0 : Borel measure such that µ(M) = 1}.

▶ The pushforward measure of µ ∈ P(M) by a Borel measurable map
g : M → Y , where Y is a topological space is

g♯µ ∈ P(Y ) : ∀h : Y → R Borel, bounded,
ˆ

M

h d(g♯µ) =
ˆ

M

h ◦ g dµ

▶ The controlled system (1) could be seen as{
µt0,µ0,u

t = Xt0,�,u
t ♯µ0, t ∈ [t0, T ], and x 7→ Xt0,x,u

t is the flow of (1),
µt0,µ0,u

t0
= µ0.

▶ The value function is

ϑ(t0, µ0) =

min
ˆ

M

ℓ(Xt0,x0,u
T )dµ0(x0),

such that (1) holds.
=

min
ˆ

M

ℓ dµt0,µ0,u
T ,

such that µt0,µ0,u
T = Xt0,�,u

T ♯µ0.
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Setting of the problem

▶ The controlled system in P(M){
µt0,µ0,u

t = Xt0,�,u
t ♯µ0, t ∈ [t0, T ], and x 7→ Xt0,x,u

t is the flow of (1),
µt0,µ0,u

t0
= µ0.

▶ The value function is

ϑ(t0, µ0) =

min
ˆ

M

ℓ dµt0,µ0,u
T ,

such that µt0,µ0,u
T = Xt0,�,u

T ♯µ0.

Does the value function satisfy a dynamic programming principle?

▶ We want to characterize the value function as the unique viscosity
solution of an HJB equation of the form∂tv +H(µ,Dµv) = 0, (t, µ) ∈ [0, T ) × P(M),

v(T, µ) =
ˆ

M

ℓ dµ.
(3)

How to define the Hamiltonian? How to define viscosity notion?

How can we define the derivative Dµv?
7 / 22
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Setting of the problem

▶ The state space in now the space P(M).

▶ Many other interesting applications take place in the space P(M).

{
∂tv(t, µ) +H(µ,Dµv) = 0, µ ∈ P(M)
v(T, µ) = g(µ).
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State of the art

Imperfect information on the initial condition

Deterministic differential games with imperfect information on
the initial condition on the space P(Rd) done by Quincampoix,
Cardaliaguet, ...

Multi-agent systems

General optimal control problem on the space P(Rd) done by
Bonnet, Rossi, Frankowska, Marigonda, Quincampoix,
Cardaliaguet, Jimenez, Piccoli, ...

▶ General theory of viscosity solutions on P(M) : not done yet.
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Dynamic programming

▶ The controlled system in P(M){
µt0,µ0,u

t = Xt0,�,u
t ♯µ0, t ∈ [t0, T ], and x 7→ Xt0,x,u

t is the flow of (1),
µt0,µ0,u

t0
= µ0.

▶ The value function is

ϑ(t0, µ0) =

min
ˆ

M

ℓ dµt0,µ0,u
T ,

such that µt0,µ0,u
T = Xt0,�,u

T ♯µ0.

Theorem (Dynamic programming)
Let µ ∈ P(M), t ∈ [0, T ] and h ∈ [0, T − t]. Then it holds

ϑ(t, µ) = inf
u(.)∈U

{ϑ(t+ h, µt,µ,u
t+h ) }.
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Wasserstein spaces

▶ Let (Y, dY ) be a Polish space (i.e. complete and separable metric space).

▶ Define

P2(Y ) := {µ ∈ P(Y ) :
ˆ

Y

d2
Y (x, x0)dµ(x) < ∞, ∀x0 ∈ Y }.

▶ The Wasserstein space (P2(Y ), dW ) is the set P2(Y ) equipped with the
distance

d2
W (µ, ν) := inf

γ

{ˆ
Y ×Y

d2
Y (x, y)dγ(x, y)

}
,

with γ ∈ P(Y × Y ) such that π1♯γ = µ and π2♯γ = ν.

▶ If Y is compact then P(Y ) = P2(Y ) and P(Y ) is compact.

▶ If (Y, dY ) is Polish, then (P2(Y ), dW ) is Polish.

▶ If (Y, dY ) is a geodesic space, then (P2(Y ), dW ) is a geodesic space.
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Wasserstein spaces

▶ (M,dM ) and (TM, dT M ) are Riemannian manifolds and equipped with
their Riemannian distances

▶ We can define the Wasserstein spaces P2(M) and P2(TM).
▶ P2(M) and P2(TM) are Polish and geodesic spaces.
▶ Since M is compact then P2(M) = P(M) and P(M) is compact.

▶ There is a formal Riemannian-like structure on P(M)1.

Rough idea

▶ P2(TM) plays the role of the tangent bundle of P(M).
▶ What plays the role of the “tangent space” at a point µ ∈ P(M) is

P2(TM)µ :=
{
γ ∈ P2(TM) : πM ♯γ = µ

}
,

πM : TM → M is the canonical projection.

1References: Lott and Villani (2009), Sturm (2006), Ohta (2009), Gigli
(2011),...
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Hamiltonian in Wasserstein space

▶ The dynamical system in P(M){
µt0,µ0,u

t = Xt0,�,u
t ♯µ0, t ∈ [t0, T ], and x 7→ Xt0,x,u

t is the flow of (1),
µt0,µ0,u

t0
= µ0.

What is the dynamics of the controlled system?

▶ The trajectories t 7→ µt0,µ0,u
t morally have the velocity

µ̇t0,µ0,u
t = f(., u(t))♯µt0,x0,u

t ∈ P2(TM)µ
t0,µ0,u
t

.

▶ Thus the Hamiltonian is chosen to be of the following form

H(µ,Dµv) := sup
u∈U

{ −Dµv � (f(., u)♯µ) }.

How can we define the derivative Dµv? How to define viscosity?
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Viscosity notion in P(M)

Key observations

When the state space is M , the test functions used are C1.

We cannot define C1 functions on P(M) because there isn’t any
smooth structure on it.

However, for Hamiltonians of the type

H(µ,Dµv) = inf
u∈U

{Dµv � (f(., u)♯µ) } µ ∈ P(M),

we only need directional derivatives

We take test functions on P(M) to be directionally
differentiable everywhere.
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Viscosity notion in P(M)
Definition (Semiconvex/semiconcave/DC function)
Let F : P(M) → R be a function.

▶ We say that F is semiconvex if there exists λ ∈ R such that for
every geodesic α : [0, 1] → P(M) the following inequality holds

F (αt) ≤ (1 − t)F (α0) + tF (α1) − λ

2 t(1 − t)d2
W (α0, α1).

▶ Let F : P2(M) → R be a function. We say that F is
semiconcave if −F is semiconvex.

▶ We say that F is DC if it can be represented as a difference of
semiconvex functions

Theorem (Differentiation of DC functions)
Let F : P(M) → R be a Lipschitz and DC function. Then F admits
directional derivatives everywhere. We say that F is differentiable and
we denote the differential by DµF .
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Viscosity notion in P(M)
Theorem (Squared Wasserstein distance) Let σ ∈ P(M). The
function µ 7→ d2

W (µ, σ) is semiconcave. Hence it admits directional
derivatives everywhere.

Definition (Test functions)
▶ Let T EST 1 be the set defined as

T EST 1 := {(t, µ) 7→ ψ(t)+a d2
W (µ, σ) : a ∈ R+, σ ∈ P(M) and ψ ∈ C1}

▶ Let T EST 2 be the set defined as

T EST 2 := {(t, µ) 7→ ψ(t)−a d2
W (µ, σ) : a ∈ R+, σ ∈ P(M) and ψ ∈ C1}

Remarks

T EST 1 functions are semiconcave with respect to the measure.

T EST 2 functions are semiconvex with respect to the measure.
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Viscosity notion in P(M)
Definition (Viscosity solutions)

▶ An u.s.c. function v : [0, T ] × P(M) → R is a viscosity
subsolution if for all ϕ ∈ T EST 1 such that v − ϕ attains a
local max at (t, µ) we have:

−∂tϕ+H(µ,Dµϕ) ≤ 0.

▶ A l.s.c. function v : [0, T ] × P(M) → R is a viscosity
supersolution if for all ϕ ∈ T EST 2 such that v − ϕ attains a
local min at (t, µ) we have:

−∂tϕ+H(µ,Dµϕ) ≥ 0.

▶ A continuous function v is said to be a viscosity solution, if it is
both a supersolution and a subsolution and verifies the final
condition

v(T, µ) =
ˆ

M

ℓ dµ, ∀µ ∈ P(M).
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Comparison principle, Well-posedness
Theorem (Comparison principle)
Let v, w : [0, T ] × P2(M) → R be respectively a bounded upper semi-
continuous subsolution and a bounded lower semicontinuous superso-
lution on [0, T ] × P(M). Then it holds:

sup
[0,T ]×P2(M)

(v − w)+ ≤ sup
{T }×P2(M)

(v − w)+,

where (k)+ = max(k, 0).

Theorem (Well-posedness)
The value function ϑ is the unique continuous viscosity solution to∂tv +H(µ,Dµv) = 0, (t, µ) ∈ [0, T ) × P(M),

v(T, µ) =
ˆ

M

ℓ dµ.
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Outline of the talk

1 Introduction

2 Setting of the problem

3 Main results

4 Conclusion and perspectives
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Conclusion and perspectives

What is done?

We defined a new notion of viscosity for Hamilton Jacobi Bellman
equations in presence of imperfect information on the initial condition
to guarantee well-posedness.
We defined a framework to study more general Hamilton Jacobi
equations in P(M).

Future work

Continue the work on more general Hamilton Jacobi equations on
P(M).
Study more general optimal control problems in P(M).
Extend this work to P(RN ). (O.J, A. Prost, H. Zidani)
Extend this notion of viscosity to other metric spaces. (O.J, H.
Zidani)
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Thank you for your attention!!!
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