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Triblock copolymers
There are three repelling monomer strands which are bonded together

Bates-Fredrickson; Zheng-Wang 1995



Triblock copolymers
I Periodic domain, Td , d = 2 or d = 3.
I Vector order parameter, u = (u0, u1, u2), ui = χΩi , with u0 + u1 + u2 = 1 on Td .
I Prescribed masses mi = |Ωi |, i = 0, 1, 2.

E (u) := ∑
06i<j62

σijHd−1(∂Ωi ∩ ∂Ωj ) + 2∑
i,j=1

γij

2

ˆ
Ωi

ˆ
Ωj

G(x − y ) dxdy

I Perimeter term: sum of the lengths/areas of the interfaces, weighted by surfacetension, σij .
I “Triangle inequality”: σij ≤ σik + σkj , ∀ i 6= j 6= k .

σij = inf
{√

2
ˆ 1

0
W 1/2(ζ(t))|ζ ′(t)|dt : ζ ∈ C1([0, 1];R3), ζ(0) = αi , ζ(1) = αj

}
.

(Γ-limit from vector-valued Cahn-Hilliard; Sternberg, Baldo, Ren-Wei)
I Nonlocal term:

I G is the (zero mean) Green’s function for −∆ on Td and (γij ) > 0 matrix of interactionstrength.

I We will consider dilute configurations, with m1,m2 � m0 , as in Choksi-Peletier with
0 < η� 1, m = Mηd , strong nonlocal interaction γ ∼ η−3; γ ∼ [η2| ln η|]−1 , d = 3, 2.
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The Isoperimetric Problem
First, consider the local term, but for Ωi ⊂ Rd , i = 1, 2, Ω0 = Rd \ (Ω1 ∪ Ω2), with
m1 = |Ω1|,m2 = |Ω2| given.

PRd (Ω0,Ω1,Ω2) = ∑
06i<j62

σijHd−1(∂Ωi ∩ ∂Ωj )

Case of equal surface tensions, σij = 1, ∀i, j . For all m1,m2 > 0, the minimizer is adouble bubble with equal contact angles at the junctions.

Left: J. Sullivan, nsf.gov. Right: Chong Wang
each chamber being bounded by spherical (circular, in 2D) patches.

I n = 2: Alfaro, Brock, Foisy, Hodges, & Zimba (1993);
I n = 3: Hutchings, Morgan, Ritoré, & Ros(2000).



The Isoperimetric Problem
First, consider the local term, but for Ωi ⊂ Rd , i = 1, 2, Ω0 = Rd \ (Ω1 ∪ Ω2), with
m1 = |Ω1|,m2 = |Ω2| given.

PRd (Ω0,Ω1,Ω2) = ∑
06i<j62

σijHd−1(∂Ωi ∩ ∂Ωj )
Case of equal surface tensions, σij = 1, ∀i, j . For all m1,m2 > 0, the minimizer is adouble bubble with equal contact angles at the junctions.

Left: J. Sullivan, nsf.gov. Right: Chong Wang
each chamber being bounded by spherical (circular, in 2D) patches.

I n = 2: Alfaro, Brock, Foisy, Hodges, & Zimba (1993);
I n = 3: Hutchings, Morgan, Ritoré, & Ros(2000).



PRd (Ω0,Ω1,Ω2) = ∑
06i<j62

σijHd−1(∂Ωi ∩ ∂Ωj )
Case of strict triangle inequality, σij < σik + σkj , i 6= j 6= k .Minimizers are double bubbles (Lawlor) but with unequal angles:

The circular arcs meet at triple junctions according to Young’s Law (see also Mullins,Bronsard-Reitich):∑
i 6=j

σij nij = 0, equivalently sin θ1

σ02
= sin θ2

σ01
= sin θ0

σ12

where nij is the normal vectors to the arc separating phases i and j .



PRd (Ω0,Ω1,Ω2) = ∑
06i<j62

σijHd−1(∂Ωi ∩ ∂Ωj )
Case of degenerate triangle inequality, e.g., σ02 = σ01 + σ12. (and others strict <)

I Transitions between Ω0 and Ω2 regions will pass through Ω1 . Minimizers are coreshells.
I Define a core-shell: CM2

M1
is a pair (Ω1,Ω2), |Ωi | = Mi , i = 1, 2, with an inner disk Ω2of mass M2 , and an outer annulus Ω1 of mass M1 ,

I The minimizer is degenerate since the location of the inner disk is free. In fact, theinner disk can even be tangential to the boundary of the outer disk.
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Adding in the nonlocal term
The nonlocal term leads to fragmentation, but for dilute (M1,M2 � M0) systems the localgeometry is isoperimetric.

Construction of solutions of the Euler-Lagrange equations via Lyapunov-Schmidt. [Equalsurface tensions σij = 1]
I Ren-Wei, an assembly of double bubbles
I Ren-Wang, an assembly of core shells
I Ren-Wang, a mixed array of single bubbles

Question: what do global minimizers in the 2D torus T 2 look like for dilute regimes?
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Droplet scaling in T2

E (u) := PT2 (Ω0,Ω1,Ω2) + 2∑
i,j=1

γij

2

ˆ
Ωi

ˆ
Ωj

G(x − y ) dxdy , u = (χΩ0 , χΩ1 , χΩ2 )
We consider a parameter regime in which components A, B are very dilute in a sea ofcomponent C, via “droplet scaling” (Choksi-Peletier, Alama-B-Choksi-Topaloglu):

I Introduce small length scale parameter (droplet radius) 0 < η� 1;
I Denote the cluster Ω = (Ω1,Ω2) ⊂ T 2 , Ω0 = T2 \ (Ω1 ∪ Ω2), with mass
|Ω| = (|Ω1|, |Ω2|) = (η2M1, η2M2), M1,M2 given constants.

I Call vη = η−2(χΩ0 , χΩ1 , χΩ2 ) ∈ BV (T 2; {0, η−2}), so ´T 2 vη = M .
I Choose interaction coeff γ = [γij ] correspondingly large;

γij = Γij

η2| ln η| , with Γij constant.
I This is a “critical scaling”; both terms in energy will have the same order.
I The energy rescales to:

Eη(vη) := ∑
i=0,1,2

η
ˆ

T 2
βi |∇v i

η|+ 1
2| ln η|

∑
i,j=1,2

Γij

ˆ
T 2

ˆ
T 2

v i
η(x ) G(x − y ) v j

η(y ) dx dy ,

where βi ≥ 0 encode the surface tensions σij .We look for minimizers as η→ 0.
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Concentration Theorem (Alama-B-Lu-Wang)
Let vη = η−2χΩη , Ωη = (Ω1

η,Ω2
η) be minimizers of Eη . Then, there exists a subsequence

η→ 0,
I N ∈ N and distinct points ξ1, . . . , ξN ∈ T2;
I points xη,k ∈ T 2 , with xη,k → ξk , k = 1, . . . ,N ;
I finite perimeter clusters Ak = (A1

k ,A2
k ), A0

k = (A1
k ∪ A2

k )c , in R2 , k = 1, . . . ,N , with∣∣∣∣∣Ωη4
N⋃

k=1

(ηAk + xη,k )∣∣∣∣∣ −→ 0,

 

got gags Blowupatty
pz

a
MY

OLDHAM
Biomass

At A
36 0

Duty
My m3 m3 IASI A 13540

T



Concentration Theorem (Alama-B-Lu-Wang)
Let vη = η−2χΩη , Ωη = (Ω1

η,Ω2
η) be minimizers of Eη . Then, there exists a subsequence

η→ 0,
I N ∈ N and distinct points ξ1, . . . , ξN ∈ T2;
I points xη,k ∈ T 2 , with xη,k → ξk , k = 1, . . . ,N ;
I finite perimeter clusters Ak = (A1

k ,A2
k ), A0

k = (A1
k ∪ A2

k )c , in R2 , k = 1, . . . ,N , with∣∣∣∣∣Ωη4
N⋃

k=1

(ηAk + xη,k )∣∣∣∣∣ −→ 0,

I The blow-up components Ak minimize weighted perimeter PR2 (A0,A1,A2), in R2 ,among clusters with mass (m1
k ,m2

k ) = (|A1
k |, |A2

k |).

I The energy decomposes as
Eη(vη) = N∑

k=1

e0(mk ) + O(| ln η|−1),
where e0(mk ) = inf

{
E0(A) | |A1| = m1, |A2| = m2

}, and
E0(A) := PR2 (A0,A1,A2) + 1

4π
∑

i,j=1,2
Γijmi mj ,
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Remarks
E0(A) := PR2 (A0,A1,A2) + 1

4π
∑

i,j=1,2
Γij mi mj ,

I The effect of nonlocality in T2 is reflected in the quadratic dependence of E0 on themasses mk .

I The decomposition into N components of masses mk is determined by minimization.
I We may formulate this as a Γ-convergence result, for finite energy configurations.
I By a second-order Γ-convergence, expect droplet centers to minimize a renormalizedenergy, expressed in terms of G(ξi , ξj ).

Once mk = (m1
k ,m2

k ) are known, the minimizers are as discussed earlier. However, theinteraction term Γ12 plays a role in choosing mi
k . . .
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The role of Γ12

Assume equal surface tensions σij = 1. The isoperimetric problem prefers double bubbles,provided both m1,m2 > 0.Proposition: ∃ explicit Γ∗12 = Γ∗12(Γ11,Γ22) so that when Γ12 > Γ∗12 and M i ≥ 4mi
∗ ,

i = 1, 2, the minimizer has only single bubbles (disks).

Luo-Ren-Wei: rectangular lattices for certain parameters.
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Double bubbles?
To have double bubbles, the interaction Γ12 = 0 or very small.Proposition

1 Given Γii > 0, for all M i < min{mi
∗, πΓ−2/3

ii } there exists Γ12(Γii ,M i ) > 0 so that ifΓ12 < Γ12 , then minimizers consist of exactly one double-bubble.

2 Let Γ12 = 0. Then, given any K1,K2 ∈ N, there exist M1,M2 for which minimizers
have at least K1 double-bubbles and K2 single bubbles.

3 If there are single-bubbles, they must be of the same species and all have the same
mass.

When there is coexistence of singleand double-bubbles, all of the singlebubbles must be of the same phase.In some sense, coexistence occurs ina minimizer when there is a largeenough excess of one phase comparedwith the other.
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Double Bubbles?
Open question: prove that minimizers must form all double bubbles, in some region of theparameter space (M1,M2,Γ). VIDEO


var ocgs=host.getOCGs(host.pageNum);for(var i=0;i<ocgs.length;i++){if(ocgs[i].name=='MediaPlayButton2'){ocgs[i].state=false;}}




Core Shells
The problem of adjacency:

I Microscopically, an ABC-copolymer interposes a B-strand between the A, Cmonomers.

I Macroscopic patterns should penalize A-to-C transitions.
I Suggests degenerate case σ02 = σ01 + σ12 more physically appropriate.
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Minimizers with core shells
VIDEO
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Resolving the degeneracy
Recall that the perimeter of a core shell is independent of the alignment of the center disk.

The internal geometry of a core shell is determined in a second Γ-limit, via the nonlocalterm:
Fη(vη) := | log η| [E (vη)− e0(M)] .This is the term which will resolve the degeneracy in core-shells:

f0(m) = inf
{∑

i,j=1,2

Γij

2

[
1

2π

ˆ
Ai

ˆ
Aj

log
1

|x − y |dx dy + mi mj RT (0)] :
A = (A1,A2) minimizes E0(A) with |A` | = m` , ` = 1, 2

} (1)
Proposition
In case σ02 = σ01 + σ12 , and m = (m1,m2) with m1,m2 > 0.(a) If Γ11 > Γ12 , then the minimum in f0(m) is attained by a concentric core shell

A = Cm1
m2 .(b) If Γ11 < Γ12 , then the minimum in f0(m) is attained by a core shell A = Cm1

m2 whose
inner boundary circle is tangent to the outside circle.
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