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Triblock copolymers

There are three repelling monomer strands which are bonded together

N S

Bates-Fredrickson; Zheng-Wang 1995



Triblock copolymers

Periodic domain, T?, d =2 or d = 3.
Vector order parameter, u = (Up, Uy, Up), Ui = Xoi, With Up + Uy + U, =1 on Te.

Prescribed masses m; = |Q/], i =0,1,2.
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Perimeter term: sum of the lengths/areas of the interfaces, weighted by surface
tension, gj.
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» Periodic domain, T9 d =2 or d = 3.
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(I-Llimit from vector-valued Cahn-Hilliard; Sternberg, Baldo, Ren-Wei)
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G is the (zero mean) Green's function for —A on T9 and (vij) > 0 matrix of interaction
strength.



Triblock copolymers

Periodic domain, T?, d =2 or d = 3.
Vector order parameter, U = (U, Uy, Us), Uj = Xgi, With Up + Uy + tp = 1 on T

Prescribed masses m; = |Q/], i =0,1,2.

Eu)= Y  oyH (00 N o0y +ZV”/ Qijf y) dxdy

0<i<j<2 ij=1

Perimeter term: sum of the lengths/areas of the interfaces, weighted by surface

tension, gj.
“Triangle inequality”: oy < owx+og ViFj+k
0j = mf{f/ W'2(¢ (tdt: ¢ € C'(0,1];R%), ¢(0) = a,,5(1):a,}.

(I-Llimit from vector-valued Cahn-Hilliard; Sternberg, Baldo, Ren-Wei)
Nonlocal term:
G is the (zero mean) Green's function for —A on T¢ and (vij) > 0 matrix of interaction
strength.
We will consider dilute configurations, with my, m, << my, as in Choksi-Peletier with
0<n<«1, m=Mn9 strong nonlocal interaction y ~ n3: vy ~[n?|Inn|]"', d =3, 2.



The Isoperimetric Problem

First, consider the local term, but for Q' c R?, i =1,2, Q% = R\ (Q" U 3?), with
my = |Q', my = |Q?| given.

Pra(Q°,Q',0%) = > oyH? (00 N 0Qy)

0<i<j<2



The Isoperimetric Problem

First, consider the local term, but for Q' c R?, i =1,2, Q% = R\ (Q" U 3?), with
my = |Q', my = |Q?| given.

Pra(Q°,Q',0%) = > oyH? (00 N 0Qy)

0<i<j<2

Case of equal surface tensions, o; = 1, Vi,j. For all my, m, > 0, the minimizer is a
double bubble with equal contact angles at the junctions.

Left: J. Sullivan, nsfgov. Right: Chong Wang

each chamber being bounded by spherical (circular, in 2D) patches.
» n = 2: Alfaro, Brock, Foisy, Hodges, & Zimba (1993);
» n = 3: Hutchings, Morgan, Ritoré, & Ros(2000).



Pea(@®,Q" 0% = ) g;H? (00 N 0Qy)
0<i<j<2
Case of strict triangle inequality, o; < oy + 0, | + j # k.
Minimizers are double bubbles (Lawlor) but with unequal angles:

The circular arcs meet at triple junctions according to Young's Law (see also Mullins,
Bronsard-Reitich):

) sin 6, sin 6, sin Gy
Z oj nj = 0, equivalently = =
[y 002 0o1 012

where nj is the normal vectors to the arc separating phases i and j.
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shells.
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0<i<j<2
Case of degenerate triangle inequality, e.qg., oo = dp1 + 012. (and others strict <)
Transitions between Q° and 02 regions will pass through Q'. Minimizers are core
shells.
Define a core-shell: Cbﬂf is a pair (Q',02), |Q'] = M;, i = 1,2, with an inner disk Q2

of mass M, and an outer annulus Q' of mass M;,
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Pra(°,Q',0%) = ) oyH% (00, N 0Qy)
0<i<j<2
Case of degenerate triangle inequality, e.qg., oo = dp1 + 012. (and others strict <)
Transitions between Q° and 02 regions will pass through Q'. Minimizers are core
shells.
Define a core-shell: Cbﬂf is a pair (Q',02), |Q'] = M;, i = 1,2, with an inner disk Q2
of mass Ms, and an outer annulus Q' of mass M,
The minimizer is degenerate since the location of the inner disk is free. In fact, the
inner disk can even be tangential to the boundary of the outer disk.

(a) (b) (c)
(d) (e) ()




Adding in the nonlocal term

The nonlocal term leads to fragmentation, but for dilute (M, M, << M) systems the local
geometry is isoperimetric.
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Construction of solutions of the Euler-Lagrange equations via Lyapunov-Schmidt. [Equal
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Ren-Wei, an assembly of double bubbles
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Adding in the nonlocal term

The nonlocal term leads to fragmentation, but for dilute (M, M, << M) systems the local

geometry is isoperimetric.

Construction of solutions of the Euler-Lagrange equations via Lyapunov-Schmidt. [Equal

surface tensions g = 1]
Ren-Wei, an assembly of double bubbles
Ren-Wang, an assembly of core shells

Ren-Wang, a mixed array of single bubbles
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Adding in the nonlocal term

The nonlocal term leads to fragmentation, but for dilute (M, M, << M) systems the local
geometry is isoperimetric.

Construction of solutions of the Euler-Lagrange equations via Lyapunov-Schmidt. [Equal
surface tensions g = 1]

Ren-Wei, an assembly of double bubbles
Ren-Wang, an assembly of core shells

Ren-Wang, a mixed array of single bubbles
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Question: what do global minimizers in the 2D torus T2 look like for dilute regimes?



Droplet scaling in T?
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We consider a parameter regime in which components A, B are very dilute in a sea of
component C, via “droplet scaling” (Choksi-Peletier, Alama-B-Choksi-Topaloglu):
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Droplet scaling in T?
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We consider a parameter regime in which components A, B are very dilute in a sea of

component C, via "droplet scallng" (Choksi-Peletier, Alama-B-Choksi-Topaloglu):
Introduce small length scale parameter (droplet radius) 0 < n < 1;
Denote the cluster QO = (Q', 02) ¢ T2, Q% = T2\ (Q" U ?), with mass
Q] = (|Q"],|1Q2]) = (M", ”? M?), M", M? given constants.
Call v, = n%(xao. Xat. Xa2) € BV(T?%{0,n72}), so [. v, = M.
Choose interaction coeff y = [y;] correspondingly large;
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This is a “critical scaling’; both terms in energy will have the same order.



Droplet scaling in T?

E(u) = P (Q°,Q", 02) + Z V”/ Glx — y) dxdy, U= (xoo. X1+ Xa2)
ij=1 o

We consider a parameter regime in which components A, B are very dilute in a sea of
component C, via “droplet scaling” (Choksi-Peletier, Alama-B-Choksi-Topaloglu):

Introduce small length scale parameter (droplet radius) 0 < n < 1;
Denote the cluster QO = (Q', 02) ¢ T2, Q% = T2\ (Q" U ?), with mass
Q] = (|Q"],|1Q2]) = (M", ”? M?), M", M? given constants.

Call v, = n%(xao. Xat. Xa2) € BV(T?%{0,n72}), so [. v, = M.
Choose interaction coeff y = [y;] correspondingly large;

Vi = with [ constant.

v
n?lInn|’
This is a “critical scaling’; both terms in energy will have the same order.
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where B; > 0 encode the surface tensions oj.
We look for minimizers as n — 0.



Concentration Theorem (Alama-B-Lu-Wang)

Let v, = 1 *xa,, Q) = (Q, O2) be minimizers of £,. Then, there exists a subsequence
n—0,

» N & N and distinct points &, .. ., &y € T?;

» points X,k € T2, with x,x — & k=1,...,N;

> finite perimeter clusters Ax = (AL, AZ), AY = (AL U A2)°, in R, k =1,..., N, with
N

0,0 A+ x,,,k)‘ — 0,
k=1

g = [mb, ) < (1), 1A5)
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among clusters with mass (m}, m2) = (|AL|, |AZ]).



Concentration Theorem (Alama-B-lLu-Wang)

Let v, = N %xaq,, Q, = (Q], Q2) be minimizers of E,. Then, there exists a subsequence
n—0,
N € N and distinct points &, .. ., &y € T?;
points x,x € T2, with X, — &, k=1,..., N;
finite perimeter clusters A, = (AL, A2), AY = (AL U A2)°, inR?, k =1,..., N, with
N

QA | nAc+ x,,,k)‘ — 0,

k=1
The blow-up components A, minimize weighted perimeter Prz(Ag, Ay, Az), in R2,
among clusters with mass (m}, m2) = (|AL|, |AZ]).

The energy decomposes as
N
E,(v,) = Z eo(mi) + O(|Inn| ™),
—1

where eo(my) = inf { Eo(A) | |A'| = m', | A?| = mz} and

Eo(A) = Pga(A°, A", A?) + H > Tym' m,

ij=12



Remarks

1 o
Eo(A) = Pgo (A%, A", A%) + i Z rim' m,
ij=12
The effect of nonlocality in T2 is reflected in the quadratic dependence of £y on the
masses M.
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Remarks

1 o
Eo(A) := Pgo (A%, A", A%) + i //—212 rim v,

The effect of nonlocality in T2 is reflected in the quadratic dependence of £y on the
masses M.

The decomposition into N components of masses my is determined by minimization.
We may formulate this as a ['-convergence result, for finite energy configurations.

By a second-order [ -convergence, expect droplet centers to minimize a renormalized
energy, expressed in terms of G(¢;, ¢)).

Once my = (m}( mi) are known, the minimizers are as discussed earlier. However, the
interaction term [ 12 plays a role in choosing my...



The role of 12

Assume equal surface tensions o; = 1. The isoperimetric problem prefers double bubbles,
provided both m', m? > 0.

Proposition: 3 explicit 5, = 55(11, [22) so that when 12 > [, and M' > 4m,
i = 1,2, the minimizer has only single bubbles (disks).
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The role of 12

Assume equal surface tensions o; = 1. The isoperimetric problem prefers double bubbles,
provided both m', m? > 0.

Proposition: 3 explicit 5, = 55(11, [22) so that when 12 > [, and M' > 4m,
i = 1,2, the minimizer has only single bubbles (disks).
Luo-Ren-Wei: rectangular lattices for certain parameters.



var ocgs=host.getOCGs(host.pageNum);for(var i=0;i<ocgs.length;i++){if(ocgs[i].name=='MediaPlayButton1'){ocgs[i].state=false;}}


Double bubbles?

To have double bubbles, the interaction [y, = 0 or very small.

Proposition

Q Given [ >0, for all M < min{m’, 7T ;%®} there exists T 15(I";, M') > O so that if
["12 < 42, then minimizers consist of exactly one double-bubble.
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have at least Ky double-bubbles and K5 single bubbles.




Double bubbles?

To have double bubbles, the interaction [y, = 0 or very small.

Proposition
@ Given [ >0, for all M’ < min{m’, 7T ;?°} there exists [1o(T;i, M') > 0 so that if
["12 < 42, then minimizers consist of exactly one double-bubble.

Q LetT 1, =0. Then, given any Ki, Ko € N, there exist M", M? for which minimizers
have at least Ky double-bubbles and K5 single bubbles.

@ If there are single-bubbles, they must be of the same species and all have the same
mass.

When there is coexistence of single
and double-bubbles, all of the single

[ ] o [ ]
) ® bubbles must be of the same phase.
@ In some sense, coexistence occurs in
® o a minimizer when there is a large
¢ © b enough excess of one phase compared
® with the other.
e
Y e




Double Bubbles?

Open question: prove that minimizers must form all double bubbles, in some region of the
parameter space (M', M2,T"). VIDEO
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Core Shells

The problem of adjacency:

Microscopically, an ABC-copolymer interposes a B-strand between the A, C
monomers.
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Core Shells

The problem of adjacency:

» Microscopically, an ABC-copolymer interposes a B-strand between the A, C
monomers.

» Macroscopic patterns should penalize A-to-C transitions.

» Suggests degenerate case gpp = 0p1 + 012 more physically appropriate.

Q&8
Q&
a&e
£&8a



VIDEO
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Resolving the degeneracy

Recall that the perimeter of a core shell is independent of the alignment of the center disk.



Resolving the degeneracy

Recall that the perimeter of a core shell is independent of the alignment of the center disk.
The internal geometry of a core shell is determined in a second [ -limit, via the nonlocal
term:

Fovy) == ‘ log | [E(Vu) - ?O(M)] .

1
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Resolving the degeneracy

Recall that the perimeter of a core shell is independent of the alignment of the center disk.
The internal geometry of a core shell is determined in a second [ -limit, via the nonlocal
term:

Fy(va) := [log n|[E(v,) — &(M)].

nl
This is the term which will resolve the degeneracg in core-shells:

fo(m)—inf{” _ Ly [%/ / Iog dxdy+m, m; Rr(0 )}

A = (A, Az) minimizes Eo(A) with |Ag| = my, € = 1,2]» M

Proposition

In case gpp = 01 + 012, and m = (my, mo) with my, my > 0.
If 141 > 12, then the minimum in fy(m) is attained by a concentric core shell
A=Cnl
If 111 < [1o, then the minimum in fo(m) is attained by a core shell A = C,'Z; whose
inner boundary circle is tangent to the outside circle.







