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Gamow'’s liquid drop model for the atomic nucleus (1)
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Gamow'’s liquid drop model for the atomic nucleus (1)

Nucleus = set E C R3, whose mass m is the volume.

. {P(E)+// 1 4edy : ECFR, |E| zm}
E ExE |a:—y|

» P(E) (surface energy): strong interaction between nucleons
» Nonlocal energy (Coulomb): electrostatic repulsion of protons
p Competition

- P: attractive local term, minimized by the ball
» 30 < m,; < m, such that'

- m <m, = existence of minimizers (ball)
- m >m, = non-existence (fission)

TKnipfi d Muratov 2013, 2014
nuprer an uratov b 'I/'|6



Gamow'’s liquid drop model for the atomic nucleus (2)

p Generalizations

min {P(E)Jr/ G(r—y)dedy : ECR", |E| m}
B ExE
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b Vo € [n—2,n), Im, >0, (m > m, = non-existence)

- Newton potential + attractive potential —/V(r) dx
E
- G compactly supported: always existence®

» What about rapidly decaying kernels?

2KNUPFER, MURATOV, JULIN, FIGALLI, FUSCO, MAGGI, MILLOT, MORINI, LU, OTTO, BONACINI, CRISTOFERI

3Rigot 2000a 216



What about “rapidly decreasing kernels”?

» Bessel kernels 3, ,, suggested* to model systems where the
long-range interaction is partially screened

“Knipfer, Murat dN 2016
nupter, Muratoyv, an ovaga 3/16



What about “rapidly decreasing kernels”?

» Bessel kernels 3, ,, suggested* to model systems where the
long-range interaction is partially screened
- solution of (Id — kA)*/2f = §,
B, () ~g OR, ()
- exponential decay at infinity

“Knipfer, Murat dN 2016
nupter, Muratoyv, an ovaga 3/16



What about “rapidly decreasing kernels”?

» Bessel kernels 3, ,, suggested* to model systems where the
long-range interaction is partially screened
- solution of (Id — kA)*/2f = §,
B, () ~g OR, ()
- exponential decay at infinity

» G sufficiently decaying at oo
— existence of large mass minimizers?

“Kniipfer, Murat dN 2016
nupter, Muratoyv, an ovaga 3/16



What about “rapidly decreasing kernels”?

» Bessel kernels 3, ,, suggested* to model systems where the
long-range interaction is partially screened

- solution of (Id — kA)*/2f = §,
B, () ~g OR, ()
. exponenUal decay at infinity
» G sufficiently decaying at oo
— existence of large mass minimizers?

p General assumptions on G

1. G € L*(R™), radial, non-negative
2. |z|G(x) € LY(R™) (“fast” decay at c0), and (up to G w vG), we set

/ |z|G(z)dz =K

“Knipfer, Murat dN 2016
nupter, Muratov, an ovaga 3/16
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Reformulation

p Since G is integrable

/ Gz — y) dz dy = |Gl agmy ] - // Gz —y) dady,
ExE Ex(RP\E)
1"(

thus 5(E)

min {P(E)—i—w/ Gz —y)dzdy : |E| :m}
£ ExE

mbin {P(E) —vPq(E) : |E]| :m}
rescaling

in  {P(E) =7 Pg,(E) : |E =B},

where ¢ := (‘%')Un, and G, = e~ "tHge™h).
P m—o00 <= — 0.
4/16
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{P(B)—71Pc,(B) « |BI =B} (+)

» Suppose spt G C By, then

Ps (E) = // G.(r —y)dzdy =~ perimeter
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in  {P(B)— 7P (B) « |B| =B} (+)
» Suppose spt G C By, then

€

Ps (E) = // G.(r —y)dzdy =~ perimeter

z,yc (B, +0E)
ExE°

» Defining p(t) := tg(t), p.(t) :== e "p(e't), we have

1 )—1
=y L@ =L@, g,
R™ xR™ |=L—3/|

m e —0° (choice of K,,)

[ 1p1:1 = P(B)

b (P—7Pg, )(E) =2 (1—7)P(E)

>Bourgain, Brezis, and Mironescu 20071; Davila 2002 5/16



Existence and convergence




Large mass minimizers

Theorem (M.P. 2021)

For all v € (0,1), there exists e, = €,(n,v,G) st. Ve < ¢,, (x) admits
a minimizer. In addition, every minimizer E_ is connected and
satisfies, up to translation,

Bl—é(e) g EE g B1+5<E)7 Whel’e 5(5) = 0
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Theorem (M.P. 2021)

For all v € (0,1), there exists e, = €,(n,v,G) st. Ve < ¢,, (x) admits
a minimizer. In addition, every minimizer E_ is connected and
satisfies, up to translation,

Bl—é(s) g EE g B1+5<E)7 Whel’e 5(5) = 0

p Back to Gamow's problem, this means that if Ié, < K,, then
there exist minimizers of arbitrarily large mass

p Every minimizer E_ is a quasi-minimizer of the perimeter, that is,
P(E,; B,(z)) < P(F; B,(z)) + e *A(n, G, )| E.AF,
for every F'st. ELAF CC B,(z) with r < ery(n, G, 7).

. : . . 1

» — (non-uniform) partial regularity®: 9E_ is loc. Cch2 away
from a set of dimension <n —8

5Tamanini 1982, Ambrosio and Paolini 1999, Rigot 2000a,b
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Minimality of the ball

Theorem (M. Goldman, B. Merlet, M. Pegon)
Forevery vy <1, 3e, >0, Ve < ¢,, By is the unique minimizer.
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Minimality of the ball

Theorem (M. Goldman, B. Merlet, M. Pegon)
Forevery vy <1, 3e, >0, Ve < ¢,, By is the unique minimizer.

p 1°t step : true among nearly spherical sets

(14 u(x))x

lulp < @

7116
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The planar case

Proposition (Convexity)

In dimension 2, for every 0 < v < 1, there exists ¢, = ¢,(G, ) s.t. for
every e < e,, any minimizer of (x) is convex.

p For any nearly spherical set E with u st. |ull < i, we have’

Lt ) 2
IV, <2 (— ul,
Tl

» Thus Hausdorff CV of the boundary = Lip CV
L any minimizer E_ is nearly spherical, where e, < V/0(e).

Theorem (B. Merlet, M.P. - Minimality of the disk)

In dimension 2, for every 0 < v < 1, the disk is the unique
minimizer, up to translations, whenever e < ¢,.

"Fuglede 1989 8/16
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Convexity of minimizers in dimension 2

p By slicing: for every direction o € St

slice Eg 4

» We rewrite the “critical functional” £, :== P — P;_as

/51 /R E,,)dt}H'(do),

) < (HO— PY)(== -)
) (recall: , . =P+ (1—7)E,)

» We notice (H° — P2)(
= F, (co(E,)) < F, (E

9/16
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In dimensionn > 3

p Recall: E. is a quasi-minimizer of the perimeter:
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In dimensionn > 3

p Recall: E. is a quasi-minimizer of the perimeter:

A(n,G,7)
&

P(E.; B,(x)) < P(F; B,(x)) + |E.AF,

forevery F st. ELAF CC B,(z) and every r < ery(n, G, )
= non-uniform

p If we had uniform C* regularity estimates:
Hausdorff CV = O CV = E_ is the ball

10/16
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Uniform regularity of minimizers (1)

p De Giorgi's strategy for local minimizers of the perimeter®
» The (spherical) excess of E_ at z € JE. at scale r is

B ) = ol / Ve, (4) — v[PH" (dy)
0*E_NB,.(x) -

vegn—1 Tnfl

v,

p The excess measures the variation of the normal vector to 9E.

S .
Revisited by Maggi 2012
evisited by Maggi 11/16



Uniform regularity of minimizers (2)

» Rmk: since E. — By and 0E. — 0By, we have

lim lime(E_,z,7) =0 uniformly in z € F_,
r—0e—0
in other words, up to taking r and e small enough, the excess is

arbitrarily small in 0E._.
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p Then it is enough to show:

Theorem
o, €, 7, Ty SUCh that, if E. is a minimizer with e < g, satisfying
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» Rmk: since E. — By and 0E. — 0By, we have

lim lime(E_,z,7) =0 uniformly in z € F_,
r—0e—0

in other words, up to taking r and e small enough, the excess is
arbitrarily small in 0E._.

p Then it is enough to show:

Theorem

o, €, 7, Ty SUCh that, if E. is a minimizer with e < g, satisfying
e(E_,x,r) <7, forsomex € OFE andsomer <,

then )
o(E.,z,5) <C(n,G,7) ()™, Vse(©n)

p By Campanato’s criterion, the normal vector is C%<, uniformly

ase — 0.
12/16
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Uniform regularity of minimizers (3)

» Generalidea: fore <, F, .~ (1—7)P in B, ()
L allows to obtain power decay of the excess down to scales 7 > ¢,
n € (0,1), by adapting the argument for local minimizers of the
perimeter
p Forr < e, treat PGE as a volume term and use classical
quasi-minimality
» To bridge the gap between scales €7 and ¢, we use the naive
scaling e(E.,r) < (?)"_1 e(E_, R) whenever r < R and the decay
of G at oo

13/16
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p Main steps (roughly):
1. If the excess is small in B,,, 0E_ N B, is almost entirely covered by a
1-Lipshitz graph T,
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p Main steps (roughly):
1. If the excess is small in B,,, 9E. N B, is almost entirely covered by a
1-Lipshitz graph T,
2. usatisfies (A —yAg_)u =~ 0, more precisely

Vu-Ve + “smaller terms”
Rn—1

- 7//D2rxDZT(U(éL“) —u(y)) (@) —¢(y))G.(z" —y',0) =0

for every ¢ € CL(D,) st. |[Vy|, = L.

3. Since e < r, u is close to a harmonic function

14/16



Decay of the excess for “large scales” (2)

4. Thus the flatness of E_ at a smaller scale Ar is much smaller than
the excess at scale 7 f(\r) < \e(r)
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5. Caccioppoli-type inequality (=reverse Poincaré) :
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where
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L relies on a refined quasi-minimality condition for E.
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Decay of the excess for “large scales” (2)

4. Thus the flatness of E_ at a smaller scale Ar is much smaller than
the excess at scale 7 f(\r) < \e(r)

5. Caccioppoli-type inequality (=reverse Poincaré) :

e(Ar/2) S f(Ar) + <§)96(A7,) + QL <£)

where

Qo= [ jelGa)ds

L relies on a refined quasi-minimality condition for E.

6. Iterating, we get power decay of the excess.
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Conclusion

» Minimizers have C*® boundary, with regularity constants not
depending on e

p For small g, any minimizer is nearly spherical
Theorem (M. Goldman, B. Merlet, M.P. - Minimality of the ball)

For every n > 2 and every 0 < «y < 1, there exists ¢, > 0 s.t. the unit

ball is the unique minimizer of (x), up to translations, as long as
e <e,.

16/16
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w is almost harmonic (1)

p Inthe ball B,, we consider variations f,(x) = x + tT'(z) where
T(z) = o(z)e,, p € CZ(D,), and competitors E, = f,(E.)
p “Localized” Euler-Lagrange + using E_ ~ T, in B,,

/ 2 (VTVF;) + “smaller terms”
r,NBy,

vnr [ [ G- T - T ) de iy =0
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w is almost harmonic (2)
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p Rewrites
VU o V(p . )
T + “smaller terms
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e
D2r Dzr —-r
H linearization
/ Vu- Ve + “smaller terms”
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w is almost harmonic (2)

p Rewrites
Vu- Ve B .,
—_— + “smaller terms
Re-t y/1 + |Vul?
n n "U.(l'/)
=2y [ [T ) el)6u — v = uly) deds’ dy =0
Dy,. /Dy, J—r
H linearization
/ Vu -V + “smaller terms”
[R'n.

2y [ ) = ele) = o )Gl = 0) =

thatis, (A —yAg_ )u=~0in B,.
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Caccioppoli inequality

» Setting &(E,t) = P(E; D, x (—1,1)) — H"(D,)
(imagine &(E_,t) ~ e(E_, B,)),
by minimality we show
E(E.,t) S CE(F,t) + CIEE,, t +£°) — E(E,, 1)) + Q1_4(1/c) ~ 0,
for every competitor F'st. ELAF C B,.
p We take “cone-like” competitors (Maggi) such that

E(F,t) =\ #(E., 2t)flatness(E., 1)

» We get (weak Caccioppoli)

o(E,,7)  \/e(Be, 20)E(E.,2r) + (£) e(B,2r) + Quo(r/e)

p By a covering argument, we deduce (strong Caccioppoli)

e(E_,r) S f(E.,2r) + (%)06(E5, 2r)+ Qq_g(r/e)
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