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A problem derived from Gamow’s model



Gamow’s liquid drop model for the atomic nucleus (1)

Nucleus = set 𝐸 ⊆ ℝ3, whose mass 𝑚 is the volume.

min
𝐸

{𝑃(𝐸) + ∬
𝐸×𝐸

1
|𝑥 − 𝑦|

d𝑥 d𝑦 ∶ 𝐸 ⊆ ℝ3, |𝐸| = 𝑚}

▶ 𝑃 (𝐸) (surface energy): strong interaction between nucleons
▶ Nonlocal energy (Coulomb): electrostatic repulsion of protons
▶ Competition

• 𝑃 : attractive local term, minimized by the ball

▶ ∃0 < 𝑚1 ≤ 𝑚2 such that1

• 𝑚 ≤ 𝑚1 ⟹ existence of minimizers (ball)
• 𝑚 > 𝑚2 ⟹ non-existence (fission)

1Knüpfer and Muratov 2013, 2014
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Gamow’s liquid drop model for the atomic nucleus (2)

▶ Generalizations

min
𝐸

{𝑃(𝐸) + ∬
𝐸×𝐸

𝐺(𝑥 − 𝑦) d𝑥 d𝑦 ∶ 𝐸 ⊆ ℝ𝑛, |𝐸| = 𝑚}

• Riesz2: 𝐺 = R𝛼 = 1
|𝑥|𝑛−𝛼 , 𝛼 ∈ (0, 𝑛), non-integrable at infinity

↱
∀𝛼 ∈ (0, 𝑛), ∃𝑚0 > 0, (𝑚 < 𝑚0 ⟹ [𝐵]𝑚 unique minimizer)

↱
∀𝛼 ∈ [𝑛 − 2, 𝑛), ∃𝑚2 > 0, (𝑚 > 𝑚2 ⟹ non-existence)

• Newton potential + attractive potential − ∫
𝐸

𝑉 (𝑥) d𝑥

• 𝐺 compactly supported: always existence3

▶ What about rapidly decaying kernels?

2Knüpfer, Muratov, Julin, Figalli, Fusco, Maggi, Millot, Morini, Lu, Otto, Bonacini, Cristoferi
3Rigot 2000a
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What about “rapidly decreasing kernels”?

▶ Bessel kernels B𝛼,𝜅 suggested4 to model systems where the
long-range interaction is partially screened

• solution of (Id − 𝜅Δ)𝛼/2𝑓 = 𝛿0

• B𝛼,𝜅(𝑥) ∼0 𝐶R𝛼(𝑥)
• exponential decay at infinity

▶ 𝐺 sufficiently decaying at ∞
⟹ existence of large mass minimizers?

▶ General assumptions on 𝐺

1. 𝐺 ∈ 𝐿1(ℝ𝑛), radial, non-negative
2. |𝑥|𝐺(𝑥) ∈ 𝐿1(ℝ𝑛) (“fast” decay at ∞), and (up to 𝐺 ⇝ 𝛾𝐺), we set

𝐼1
𝐺 ≔ ∫

ℝ𝑛
|𝑥|𝐺(𝑥) d𝑥 = 𝐊𝑛

4Knüpfer, Muratov, and Novaga 2016 3/16
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Reformulation

▶ Since 𝐺 is integrable

∬
𝐸×𝐸

𝐺(𝑥 − 𝑦) d𝑥 d𝑦 = ‖𝐺‖𝐿1(ℝ𝑛)|𝐸| − ∬
𝐸×(ℝ𝑛⧵𝐸)

𝐺(𝑥 − 𝑦) d𝑥 d𝑦
⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

P𝐺(𝐸)

,

thus

min
𝐸

{𝑃(𝐸) + 𝛾 ∬
𝐸×𝐸

𝐺(𝑥 − 𝑦) d𝑥 d𝑦 ∶ |𝐸| = 𝑚}
⇕⇕⇕⇕

min
𝐸

{𝑃(𝐸) − 𝛾 P𝐺(𝐸) ∶ |𝐸| = 𝑚}

⇕⇕⇕⇕ rescaling

min
𝐸

{𝑃(𝐸) − 𝛾 P𝐺𝜀
(𝐸) ∶ |𝐸| = |𝐵1|},

where 𝜀 ≔ ( |𝐵1|
𝑚

)1/𝑛, and 𝐺𝜀 = 𝜀−(𝑛+1)𝐺(𝜀−1⋅).
▶ 𝑚 → ∞ ⟺ 𝜀 → 0.
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Nonlocal perimeter

min
𝐸

{𝑃(𝐸) − 𝛾 P𝐺𝜀
(𝐸) ∶ |𝐸| = |𝐵1|} (⋆)

▶ Suppose spt 𝐺 ⊆ 𝐵1, then

P𝐺𝜀
(𝐸) = ∬

𝑥,𝑦 ∈ (𝐵𝜀+𝜕𝐸)
𝐸×𝐸c

𝐺𝜀(𝑥 − 𝑦) d𝑥 d𝑦 ≃ perimeter

▶ Defining 𝜌(𝑡) ≔ 𝑡𝑔(𝑡), 𝜌𝜀(𝑡) ≔ 𝜀−𝑛𝜌(𝜀−1𝑡), we have

P𝐺𝜀
(𝐸) = 1

2
∬

ℝ𝑛×ℝ𝑛

|𝟏𝐸(𝑥) − 𝟏𝐸(𝑦)|
|𝑥 − 𝑦|

𝜌𝜀(𝑥 − 𝑦) d𝑥 d𝑦

↓↓↓↓↓

≤ 𝜀 → 05 (choice of 𝐊𝑛)

∫
ℝ𝑛

|𝐷𝟏𝐸| = 𝑃 (𝐸)

▶ (𝑃 − 𝛾 P𝐺𝜀
)(𝐸)

𝜀 → 0
−−−−→ (1 − 𝛾)𝑃 (𝐸)

5Bourgain, Brezis, and Mironescu 2001; Dávila 2002
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Existence and convergence



Large mass minimizers

Theorem (M.P. 2021)

For all 𝛾 ∈ (0, 1), there exists 𝜀𝑒 = 𝜀𝑒(𝑛, 𝛾, 𝐺) s.t. ∀𝜀 < 𝜀𝑒, (⋆) admits
a minimizer. In addition, every minimizer 𝐸𝜀 is connected and
satisfies, up to translation,

𝐵1−𝛿(𝜀) ⊆ 𝐸𝜀 ⊆ 𝐵1+𝛿(𝜀), where 𝛿(𝜀) → 0.

▶ Back to Gamow’s problem, this means that if 𝐼1
𝐺 < 𝐊𝑛, then

there exist minimizers of arbitrarily large mass
▶ Every minimizer 𝐸𝜀 is a quasi-minimizer of the perimeter, that is,

𝑃(𝐸𝜀; 𝐵𝑟(𝑥)) ≤ 𝑃(𝐹 ; 𝐵𝑟(𝑥)) + 𝜀−1Λ(𝑛, 𝐺, 𝛾)|𝐸𝜀△𝐹|,

for every 𝐹 s.t. 𝐸𝜀△𝐹 ⊂⊂ 𝐵𝑟(𝑥) with 𝑟 < 𝜀𝑟0(𝑛, 𝐺, 𝛾).

▶ ⟹ (non-uniform) partial regularity6: 𝜕𝐸𝜀 is loc. 𝐶1, 1
2 away

from a set of dimension ≤ 𝑛 − 8

6Tamanini 1982, Ambrosio and Paolini 1999, Rigot 2000a,b
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Minimality of the ball



Minimality of the ball

Theorem (M. Goldman, B. Merlet, M. Pegon)
For every 𝛾 < 1, ∃𝜀∗ > 0, ∀𝜀 < 𝜀∗, 𝐵1 is the unique minimizer.

▶ 1st step : true among nearly spherical sets

O

x

(1 + u(x))x

E
‖𝑢‖Lip ≤ 𝛼
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The planar case



The planar case

Proposition (Convexity)
In dimension 2, for every 0 < 𝛾 < 1, there exists 𝜀∗ = 𝜀∗(𝐺, 𝛾) s.t. for
every 𝜀 < 𝜀∗, any minimizer of (⋆) is convex.

▶ For any nearly spherical set 𝐸 with 𝑢 s.t. ‖𝑢‖∞ < 1
4
, we have7

‖∇𝜏 𝑢‖∞ ≤ 2 (
1 + ‖𝑢‖∞

1 − ‖𝑢‖∞
) ‖𝑢‖

1
2
∞,

▶ Thus Hausdorff CV of the boundary ⟹ Lip CV↱
any minimizer 𝐸𝜀 is nearly spherical, where ‖𝑢𝜀‖Lip ≤ √𝛿(𝜀).

Theorem (B. Merlet, M.P. – Minimality of the disk)
In dimension 2, for every 0 < 𝛾 < 1, the disk is the unique
minimizer, up to translations, whenever 𝜀 < 𝜀∗.

7Fuglede 1989
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Convexity of minimizers in dimension 2

▶ By slicing: for every direction 𝜎 ∈ 𝕊1

▶ We rewrite the “critical functional” E𝜀 ≔ 𝑃 − P𝐺𝜀
as

E𝜀(𝐸) = 1
4

∫
𝕊1

∫
ℝ
(H0 − 𝑃 1

𝜀 )(𝐸𝜎,𝑡) d𝑡H1(d𝜎),

▶ We notice (H0 − 𝑃 1
𝜀 )( ) ≤ (H0 − 𝑃 1

𝜀 )( )
⟹ F𝛾,𝜀(co(𝐸𝜀)) ≤ F𝛾,𝜀(𝐸𝜀) (recall: F𝛾,𝜀 = 𝛾𝑃 + (1 − 𝛾)E𝜀)
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In higher dimensions (𝑛 ≥ 3)



In dimension 𝑛 ≥ 3

▶ Recall: 𝐸𝜀 is a quasi-minimizer of the perimeter:

𝑃(𝐸𝜀; 𝐵𝑟(𝑥)) ≤ 𝑃(𝐹 ; 𝐵𝑟(𝑥)) +
Λ(𝑛, 𝐺, 𝛾)

𝜀
|𝐸𝜀△𝐹|,

for every 𝐹 s.t. 𝐸𝜀△𝐹 ⊂⊂ 𝐵𝑟(𝑥) and every 𝑟 < 𝜀𝑟0(𝑛, 𝐺, 𝛾)

⟹ non-uniform
▶ If we had uniform 𝐶1,𝛼 regularity estimates:

Hausdorff CV ⟹ 𝐶1,𝛼 CV ⟹ 𝐸𝜀 is the ball
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Uniform regularity of minimizers (1)

▶ De Giorgi’s strategy for local minimizers of the perimeter8

▶ The (spherical) excess of 𝐸𝜀 at 𝑥 ∈ 𝜕𝐸𝜀 at scale 𝑟 is

𝐞(𝐸𝜀, 𝑥, 𝑟) ≔ inf
𝜈∈𝕊𝑛−1

1
𝑟𝑛−1 ∫

𝜕∗𝐸𝜀∩𝐵𝑟(𝑥)
|𝜈𝐸𝜀

(𝑦) − 𝜈|2H𝑛−1(d𝑦)

x

Eε

∂Eε

νEε

▶ The excess measures the variation of the normal vector to 𝜕𝐸𝜀

8Revisited by Maggi 2012 11/16
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Uniform regularity of minimizers (2)

▶ Rmk: since 𝐸𝜀 → 𝐵1 and 𝜕𝐸𝜀 → 𝜕𝐵1, we have

lim
𝑟→0

lim
𝜀→0

𝐞(𝐸𝜀, 𝑥, 𝑟) = 0 uniformly in 𝑥 ∈ 𝜕𝐸𝜀,

in other words, up to taking 𝑟 and 𝜀 small enough, the excess is
arbitrarily small in 𝜕𝐸𝜀.

▶ Then it is enough to show:

Theorem
∃𝛼, 𝜀0, 𝜏, 𝑟0 such that, if 𝐸𝜀 is a minimizer with 𝜀 < 𝜀0 satisfying

𝐞(𝐸𝜀, 𝑥, 𝑟) < 𝜏, for some 𝑥 ∈ 𝜕𝐸 and some 𝑟 < 𝑟0,

then
𝐞(𝐸𝜀, 𝑥, 𝑠) ≤ 𝐶(𝑛, 𝐺, 𝛾) (𝑠

𝑟
)

2𝛼
, ∀𝑠 ∈ (0, 𝑟).

▶ By Campanato’s criterion, the normal vector is 𝐶0,𝛼, uniformly
as 𝜀 → 0.
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Uniform regularity of minimizers (3)

▶ General idea: for 𝜀 ≪ 𝑟, F𝛾,𝜀 ≃ (1 − 𝛾)𝑃 in 𝐵𝑟(𝑥)

↱
allows to obtain power decay of the excess down to scales 𝜀𝜂 ≫ 𝜀,
𝜂 ∈ (0, 1), by adapting the argument for local minimizers of the
perimeter

▶ For 𝑟 ≲ 𝜀, treat 𝑃𝐺𝜀
as a volume term and use classical

quasi-minimality
▶ To bridge the gap between scales 𝜀𝜂 and 𝜀, we use the naive
scaling 𝐞(𝐸𝜀, 𝑟) ≤ ( 𝑅

𝑟
)𝑛−1 𝐞(𝐸𝜀, 𝑅) whenever 𝑟 < 𝑅 and the decay

of 𝐺 at ∞
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Decay of the excess for “large scales” (1)

▶ Main steps (roughly):
1. If the excess is small in 𝐵2𝑟, 𝜕𝐸𝜀 ∩ 𝐵𝑟 is almost entirely covered by a

1-Lipshitz graph Γ𝑢

2. 𝑢 satisfies (Δ − 𝛾Δ𝐺𝜀
)𝑢 ≃ 0 , more precisely

∫
ℝ𝑛−1

∇𝑢 ⋅ ∇𝜑 + “smaller terms”

− 𝛾 ∬
𝐷2𝑟×𝐷2𝑟

(𝑢(𝑥′) − 𝑢(𝑦′))(𝜑(𝑥′) − 𝜑(𝑦′))𝐺𝜀(𝑥′ − 𝑦′, 0) = 0

for every 𝜑 ∈ 𝐶1
𝑐 (𝐷𝑟) s.t. ‖∇𝜑‖∞ = 1.

3. Since 𝜀 ≪ 𝑟, 𝑢 is close to a harmonic function
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Decay of the excess for “large scales” (2)

4. Thus the flatness of 𝐸𝜀 at a smaller scale 𝜆𝑟 is much smaller than
the excess at scale 𝑟: 𝐟 (𝜆𝑟) ≲ 𝜆2𝐞(𝑟)

5. Caccioppoli-type inequality (=reverse Poincaré) :

𝐞(𝜆𝑟/2) ≲ 𝐟(𝜆𝑟) + (𝜀
𝑟

)
𝜃

𝐞(𝜆𝑟) + 𝑄1−𝜃 (𝑟
𝜀

)

where
𝑄1−𝜃 (𝑅) ≔ ∫

ℝ𝑛⧵𝐵𝑅1−𝜃

|𝑥|𝐺(𝑥) d𝑥

↱
relies on a refined quasi-minimality condition for 𝐸𝜀

6. Iterating, we get power decay of the excess.
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Conclusion

▶ Minimizers have 𝐶1,𝛼 boundary, with regularity constants not
depending on 𝜀

▶ For small 𝜀, any minimizer is nearly spherical

Theorem (M. Goldman, B. Merlet, M.P. – Minimality of the ball)
For every 𝑛 ≥ 2 and every 0 < 𝛾 < 1, there exists 𝜀∗ > 0 s.t. the unit
ball is the unique minimizer of (⋆), up to translations, as long as
𝜀 < 𝜀∗.
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Thank you!





𝑢 is almost harmonic (1)

▶ In the ball 𝐵𝑟, we consider variations 𝑓𝑡(𝑥) = 𝑥 + 𝑡𝑇 (𝑥) where
𝑇 (𝑥) = 𝜑(𝑥′)𝑒𝑛, 𝜑 ∈ 𝐶∞

𝑐 (𝐷𝑟), and competitors 𝐸𝑡 = 𝑓𝑡(𝐸𝜀)

▶ “Localized” Euler–Lagrange

+ using 𝐸𝜀 ≃ Γ−
𝑢 in 𝐵2𝑟
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+ 2𝛾 ∫
𝜕∗𝐸𝜀∩𝐵2𝑟

∫
𝐸𝜀∩𝐵2𝑟

𝐺𝜀(𝑥 − 𝑦)(𝑇𝑥 − 𝑇𝑦) ⋅ 𝜈𝐸𝜀
(𝑦) d𝑥 𝑑H𝑛−1

𝑦 = 0
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𝑢 is almost harmonic (2)

▶ Rewrites

∫
ℝ𝑛−1

∇𝑢 ⋅ ∇𝜑
√1 + |∇𝑢|2

+ “smaller terms”

−2𝛾 ∫
𝐷2𝑟

∫
𝐷2𝑟

∫
𝑢(𝑥′)

−𝑟
(𝜑(𝑥′) − 𝜑(𝑦′))𝐺𝜀(𝑥′ − 𝑦′, 𝑡 − 𝑢(𝑦′)) d𝑡 d𝑥′ d𝑦′ = 0

⇓⇓⇓⇓⇓⇓⇓⇓⇓
linearization

∫
ℝ𝑛−1

∇𝑢 ⋅ ∇𝜑 + “smaller terms”

−2𝛾 ∫
𝐷2𝑟

∫
𝐷2𝑟

(𝑢(𝑥′) − 𝑢(𝑦′))(𝜑(𝑥′) − 𝜑(𝑦′))𝐺𝜀(𝑥′ − 𝑦′, 0) = 0,
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Caccioppoli inequality

▶ Setting ℰ(𝐸, 𝑡) = 𝑃(𝐸; 𝐷𝑡 × (−1, 1)) − H𝑛−1(𝐷𝑡)
(imagine ℰ(𝐸𝜀, 𝑡) ≃ 𝐞(𝐸𝜀, 𝐵𝑡)),
by minimality we show

ℰ(𝐸𝜀, 𝑡) ≲ 𝐶ℰ(𝐹 , 𝑡) + 𝐶[ℰ(𝐸𝜀, 𝑡 + 𝜀𝜃) − ℰ(𝐸𝜀, 𝑡)] + 𝑄1−𝜃(1/𝜀) ≃ 0,

for every competitor 𝐹 s.t. 𝐸𝜀△𝐹 ⊂ 𝐵𝑡.

▶ We take “cone-like” competitors (Maggi) such that

ℰ(𝐹 , 𝑡) ≃ √ℰ(𝐸𝜀, 2𝑡)flatness(𝐸𝜀, 2𝑡)

▶ We get (weak Caccioppoli)

𝐞(𝐸𝜀, 𝑟) ≲ √𝐞(𝐸𝜀, 2𝑟)𝐟(𝐸𝜀, 2𝑟) + (𝜀
𝑟

)
𝜃

𝐞(𝐸𝜀, 2𝑟) + 𝑄1−𝜃(𝑟/𝜀)

▶ By a covering argument, we deduce (strong Caccioppoli)

𝐞(𝐸𝜀, 𝑟) ≲ 𝐟(𝐸𝜀, 2𝑟) + (𝜀
𝑟

)
𝜃

𝐞(𝐸𝜀, 2𝑟) + 𝑄1−𝜃(𝑟/𝜀)
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