An isoperimetric problem derived from Gamow's model for the atomic nucleus

Joint work with Michael Goldman and Benoît Merlet

Marc Pegon

SMAI congress - May 23rd 2023

Université de Lille Laboratoire Paul Painlevé

A problem derived from Gamow's model

$$\min_E \quad \left\{ P(E) + \iint_{E \times E} \frac{1}{|x - y|} \, \mathrm{d}x \, \mathrm{d}y \ : \ E \subseteq \mathbb{R}^3, \ |E| = m \right\}$$

$$\min_E \quad \left\{ P(E) + \iint_{E \times E} \frac{1}{|x - y|} \, \mathrm{d}x \, \mathrm{d}y \ : \ E \subseteq \mathbb{R}^3, \ |E| = m \right\}$$

 \triangleright P(E) (surface energy): strong interaction between nucleons

$$\min_E \quad \left\{ P(E) + \iint_{E \times E} \frac{1}{|x - y|} \, \mathrm{d}x \, \mathrm{d}y \ : \ E \subseteq \mathbb{R}^3, \ |E| = m \right\}$$

P(E) (surface energy): strong interaction between nucleons
 Nonlocal energy (Coulomb): electrostatic repulsion of protons

$$\min_E \quad \left\{ P(E) + \iint_{E \times E} \frac{1}{|x-y|} \, \mathrm{d}x \, \mathrm{d}y \ : \ E \subseteq \mathbb{R}^3, \ |E| = m \right\}$$

- P(E) (surface energy): strong interaction between nucleons
 Nonlocal energy (Coulomb): electrostatic repulsion of protons
 Competition
 - P: attractive local term, minimized by the ball

$$\min_E \quad \left\{ P(E) + \iint_{E \times E} \frac{1}{|x-y|} \, \mathrm{d}x \, \mathrm{d}y \ : \ E \subseteq \mathbb{R}^3, \ |E| = m \right\}$$

- P(E) (surface energy): strong interaction between nucleons
 Nonlocal energy (Coulomb): electrostatic repulsion of protons
 Competition
 - P: attractive local term, minimized by the ball
- $\blacktriangleright \exists 0 < m_1 \leq m_2 \text{ such that}^1$
 - $\cdot m \leq m_1 \implies$ existence of minimizers (ball)
 - $\cdot m > m_2 \implies$ non-existence (fission)

¹Knüpfer and Muratov 2013, 2014

Gamow's liquid drop model for the atomic nucleus (2)

Generalizations

$$\min_E \quad \left\{ P(E) + \iint_{E \times E} G(x - y) \, \mathrm{d}x \, \mathrm{d}y \; : \; E \subseteq \mathbb{R}^n, |E| = m \right\}$$

$$\min_E \quad \left\{ P(E) + \iint_{E \times E} G(x-y) \, \mathrm{d}x \, \mathrm{d}y \ : \ E \subseteq \mathbb{R}^n, |E| = m \right\}$$

²Knüpfer, Muratov, Julin, Figalli, Fusco, Maggi, Millot, Morini, Lu, Otto, Bonacini, Cristoferi

$$\min_E \quad \left\{ P(E) + \iint_{E \times E} G(x - y) \, \mathrm{d}x \, \mathrm{d}y \ : \ E \subseteq \mathbb{R}^n, |E| = m \right\}$$

 $\begin{array}{l} \cdot \ \operatorname{Riesz^2:} \ G = \mathcal{R}_{\alpha} = \frac{1}{|x|^{n-\alpha}}, \, \alpha \in (0,n), \, \operatorname{non-integrable} \, \operatorname{at} \, \operatorname{infinity} \\ \stackrel{l}{\to} \forall \alpha \in (0,n), \, \exists m_0 > 0, \, (m < m_0 \implies [{\pmb{B}}]_{\pmb{m}} \, \operatorname{unique} \, \operatorname{minimizer}) \\ \stackrel{l}{\to} \forall \alpha \in [n-2,n), \, \exists m_2 > 0, \, (m > m_2 \implies \, \operatorname{non-existence}) \end{array}$

• Newton potential + attractive potential $-\int_E V(x) \, \mathrm{d}x$

²Knüpfer, Muratov, Julin, Figalli, Fusco, Maggi, Millot, Morini, Lu, Otto, Bonacini, Cristoferi

$$\min_E \quad \left\{ P(E) + \iint_{E \times E} G(x - y) \, \mathrm{d}x \, \mathrm{d}y \ : \ E \subseteq \mathbb{R}^n, |E| = m \right\}$$

- $\begin{array}{l} \cdot \ \operatorname{Riesz^2:} \ G = \mathcal{R}_\alpha = \frac{1}{|x|^{n-\alpha}}, \, \alpha \in (0,n), \, \operatorname{non-integrable} \, \operatorname{at} \, \operatorname{infinity} \\ \stackrel{l}{\to} \forall \alpha \in (0,n), \, \exists m_0 > 0, \, (m < m_0 \implies [{\pmb{B}}]_{\pmb{m}} \, \operatorname{unique} \, \operatorname{minimizer}) \\ \stackrel{l}{\to} \forall \alpha \in [n-2,n), \, \exists m_2 > 0, \, (m > m_2 \implies \, \operatorname{non-existence}) \end{array}$
- Newton potential + attractive potential $-\int_{T} V(x) \, \mathrm{d}x$
- G compactly supported: always existence³

²Knüpfer, Muratov, Julin, Figalli, Fusco, Maggi, Millot, Morini, Lu, Otto, Bonacini, Cristoferi ³Rigot 2000a

$$\min_E \quad \left\{ P(E) + \iint_{E \times E} G(x - y) \, \mathrm{d}x \, \mathrm{d}y \ : \ E \subseteq \mathbb{R}^n, |E| = m \right\}$$

- $\begin{array}{l} \cdot \ \operatorname{Riesz^2:} \ G = \mathcal{R}_\alpha = \frac{1}{|x|^{n-\alpha}}, \, \alpha \in (0,n), \, \operatorname{non-integrable} \, \operatorname{at} \, \operatorname{infinity} \\ \stackrel{l}{\to} \forall \alpha \in (0,n), \, \exists m_0 > 0, \, (m < m_0 \implies [{\pmb{B}}]_{\pmb{m}} \, \operatorname{unique} \, \operatorname{minimizer}) \\ \stackrel{l}{\to} \forall \alpha \in [n-2,n), \, \exists m_2 > 0, \, (m > m_2 \implies \, \operatorname{non-existence}) \end{array}$
- Newton potential + attractive potential $-\int_{T} V(x) dx$
- G compactly supported: always existence³

What about rapidly decaying kernels?

²Knüpfer, Muratov, Julin, Figalli, Fusco, Maggi, Millot, Morini, Lu, Otto, Bonacini, Cristoferi ³Rigot 2000a

► Bessel kernels $\mathcal{B}_{\alpha,\kappa}$ suggested⁴ to model systems where the long-range interaction is partially screened

⁴Knüpfer, Muratov, and Novaga 2016

► Bessel kernels $\mathcal{B}_{\alpha,\kappa}$ suggested⁴ to model systems where the long-range interaction is partially screened

- solution of $(\mathrm{Id} \kappa \Delta)^{\alpha/2} f = \delta_0$
- $\mathcal{B}_{\alpha,\kappa}(x) \sim_0 C\mathcal{R}_{\alpha}(x)$
- exponential decay at infinity

⁴Knüpfer, Muratov, and Novaga 2016

▶ Bessel kernels $\mathcal{B}_{\alpha,\kappa}$ suggested⁴ to model systems where the long-range interaction is partially screened

- solution of $(\mathrm{Id} \kappa \Delta)^{\alpha/2} f = \delta_0$
- $\mathcal{B}_{\alpha,\kappa}(x) \sim_0 C\mathcal{R}_{\alpha}(x)$
- exponential decay at infinity
- \blacktriangleright G sufficiently decaying at ∞
 - \implies existence of large mass minimizers?

⁴Knüpfer, Muratov, and Novaga 2016

▶ Bessel kernels $\mathcal{B}_{\alpha,\kappa}$ suggested⁴ to model systems where the long-range interaction is partially screened

- solution of $(\mathrm{Id} \kappa \Delta)^{\alpha/2} f = \delta_0$
- $\mathcal{B}_{\alpha,\kappa}(x) \sim_0 C\mathcal{R}_{\alpha}(x)$
- exponential decay at infinity
- \blacktriangleright G sufficiently decaying at ∞
 - \implies existence of large mass minimizers?
- General assumptions on G
 - 1. $G \in L^1(\mathbb{R}^n)$, radial, non-negative
 - 2. $|x|G(x) \in L^1(\mathbb{R}^n)$ ("fast" decay at ∞), and (up to $G \rightsquigarrow \gamma G$), we set

$$I_G^1\coloneqq \int_{\mathbb{R}^n} \lvert x \rvert G(x) \, \mathrm{d} x = \mathbf{K}_n$$

⁴Knüpfer, Muratov, and Novaga 2016

$$\iint_{E\times E} G(x-y)\,\mathrm{d} x\,\mathrm{d} y = \|G\|_{L^1(\mathbb{R}^n)}|E| - \iint_{E\times (\mathbb{R}^n\setminus E)} G(x-y)\,\mathrm{d} x\,\mathrm{d} y,$$

$$\iint_{E\times E} G(x-y)\,\mathrm{d} x\,\mathrm{d} y = \|G\|_{L^1(\mathbb{R}^n)}|E| - \underbrace{\iint_{E\times (\mathbb{R}^n\setminus E)} G(x-y)\,\mathrm{d} x\,\mathrm{d} y}_{P_G(E)},$$

$$\min_{E} \quad \left\{ P(E) - \gamma P_{G_{\varepsilon}}(E) \ : \ |E| = |B_1| \right\} \tag{(\star)}$$

$$\min_{E} \quad \left\{ P(E) - \gamma P_{G_{\varepsilon}}(E) \ : \ |E| = |B_1| \right\} \tag{(\star)}$$

▶ Suppose spt
$$G \subseteq B_1$$
, then

$$P_{G_{\varepsilon}}(E) = \iint_{\substack{x,y \in (B_{\varepsilon} + \partial E) \\ E \times E^c}} G_{\varepsilon}(x-y) \, \mathrm{d}x \, \mathrm{d}y \quad \simeq \quad \mathsf{perimeter}$$

$$\min_{E} \quad \left\{ P(E) - \gamma P_{G_{\varepsilon}}(E) \; : \; |E| = |B_1| \right\} \tag{(\star)}$$

Suppose spt
$$G \subseteq B_1$$
, then

$$P_{G_\varepsilon}(E) = \iint_{\substack{x,y \in (B_\varepsilon + \partial E) \\ E \times E^c}} G_\varepsilon(x-y) \,\mathrm{d}x \,\mathrm{d}y \quad \simeq \quad \mathsf{perimeter}$$

 \blacktriangleright Defining $\rho(t):=tg(t),\,\rho_{\varepsilon}(t):=\varepsilon^{-n}\rho(\varepsilon^{-1}t),$ we have

$$P_{G_{\varepsilon}}(E) = \frac{1}{2} \iint_{\mathbb{R}^n \times \mathbb{R}^n} \frac{|\mathbf{1}_E(x) - \mathbf{1}_E(y)|}{|x - y|} \rho_{\varepsilon}(x - y) \,\mathrm{d}x \,\mathrm{d}y$$

Su

$$\min_{E} \quad \left\{ P(E) - \gamma P_{G_{\varepsilon}}(E) \ : \ |E| = |B_1| \right\} \tag{(\star)}$$

ppose spt
$$G \subseteq B_1$$
, then
 $P_{G_{\varepsilon}}(E) = \iint_{x,y \in (B_{\varepsilon} + \partial E)} G_{\varepsilon}(x-y) \, \mathrm{d}x \, \mathrm{d}y \simeq \mathsf{perimeter}$

 \blacktriangleright Defining $\rho(t):=tg(t),\,\rho_{\varepsilon}(t):=\varepsilon^{-n}\rho(\varepsilon^{-1}t),$ we have

 $E \times E^{c}$

⁵Bourgain, Brezis, and Mironescu 2001; Dávila 2002

$$\min_{E} \quad \left\{ P(E) - \gamma P_{G_{\varepsilon}}(E) \ : \ |E| = |B_1| \right\} \tag{(\star)}$$

⁵Bourgain, Brezis, and Mironescu 2001; Dávila 2002

Existence and convergence

For all $\gamma \in (0,1)$, there exists $\varepsilon_e = \varepsilon_e(n,\gamma,G)$ s.t. $\forall \varepsilon < \varepsilon_e$, (*) admits a minimizer. In addition, every minimizer E_{ε} is **connected** and satisfies, up to translation,

$$B_{1-\delta(\varepsilon)}\subseteq E_{\varepsilon}\subseteq B_{1+\delta(\varepsilon)}, \quad \text{where } \delta(\varepsilon)\to 0.$$

For all $\gamma \in (0,1)$, there exists $\varepsilon_e = \varepsilon_e(n,\gamma,G)$ s.t. $\forall \varepsilon < \varepsilon_e$, (*) admits a minimizer. In addition, every minimizer E_{ε} is **connected** and satisfies, up to translation,

$$B_{1-\delta(\varepsilon)}\subseteq E_{\varepsilon}\subseteq B_{1+\delta(\varepsilon)}, \quad \text{where } \delta(\varepsilon)\to 0.$$

▶ Back to Gamow's problem, this means that if I¹_G < K_n, then there exist minimizers of arbitrarily large mass

For all $\gamma \in (0,1)$, there exists $\varepsilon_e = \varepsilon_e(n,\gamma,G)$ s.t. $\forall \varepsilon < \varepsilon_e$, (*) admits a minimizer. In addition, every minimizer E_{ε} is **connected** and satisfies, up to translation,

$$B_{1-\delta(\varepsilon)}\subseteq E_{\varepsilon}\subseteq B_{1+\delta(\varepsilon)}, \quad \text{ where } \delta(\varepsilon)\to 0.$$

- ▶ Back to Gamow's problem, this means that if I¹_G < K_n, then there exist minimizers of arbitrarily large mass
- \blacktriangleright Every minimizer E_{ε} is a quasi-minimizer of the perimeter, that is,

 $P(E_{\varepsilon};B_{r}(x)) \leq P(F;B_{r}(x)) + \varepsilon^{-1}\Lambda(n,G,\gamma)|E_{\varepsilon} \triangle F|,$

for every F s.t. $E_{\varepsilon} \triangle F \subset B_r(x)$ with $r < \varepsilon r_0(n, G, \gamma)$.

For all $\gamma \in (0,1)$, there exists $\varepsilon_e = \varepsilon_e(n,\gamma,G)$ s.t. $\forall \varepsilon < \varepsilon_e$, (*) admits a minimizer. In addition, every minimizer E_{ε} is **connected** and satisfies, up to translation,

$$B_{1-\delta(\varepsilon)}\subseteq E_{\varepsilon}\subseteq B_{1+\delta(\varepsilon)}, \quad \text{where } \delta(\varepsilon)\to 0.$$

- ▶ Back to Gamow's problem, this means that if I¹_G < K_n, then there exist minimizers of arbitrarily large mass
- \blacktriangleright Every minimizer E_{ε} is a quasi-minimizer of the perimeter, that is,

 $P(E_{\varepsilon};B_{r}(x)) \leq P(F;B_{r}(x)) + \varepsilon^{-1}\Lambda(n,G,\gamma)|E_{\varepsilon} \triangle F|,$

for every F s.t. $E_{\varepsilon} \triangle F \subset \subset B_r(x)$ with $r < \varepsilon r_0(n, G, \gamma)$.

▶ \implies (non-uniform) partial regularity⁶: ∂E_{ε} is loc. $C^{1,\frac{1}{2}}$ away from a set of dimension $\leq n-8$

⁶Tamanini 1982, Ambrosio and Paolini 1999, Rigot 2000a,b

Minimality of the ball

Theorem (M. Goldman, B. Merlet, M. Pegon) For every $\gamma < 1$, $\exists \varepsilon_* > 0$, $\forall \varepsilon < \varepsilon_*$, B_1 is the unique minimizer. Theorem (M. Goldman, B. Merlet, M. Pegon) For every $\gamma < 1$, $\exists \varepsilon_* > 0$, $\forall \varepsilon < \varepsilon_*$, B_1 is the unique minimizer.

▶ 1st step : true among nearly spherical sets

The planar case

Proposition (Convexity)

In dimension 2, for every $0 < \gamma < 1$, there exists $\varepsilon_* = \varepsilon_*(G, \gamma)$ s.t. for every $\varepsilon < \varepsilon_*$, any minimizer of (*) is **convex**.
Proposition (Convexity)

In dimension 2, for every $0 < \gamma < 1$, there exists $\varepsilon_* = \varepsilon_*(G, \gamma)$ s.t. for every $\varepsilon < \varepsilon_*$, any minimizer of (*) is **convex**.

For any nearly spherical set E with u s.t. $||u||_{\infty} < \frac{1}{4}$, we have⁷

$$\|\nabla_{\tau} \, u\|_{\infty} \leq 2 \left(\frac{1+\|u\|_{\infty}}{1-\|u\|_{\infty}} \right) \|u\|_{\infty}^{\frac{1}{2}},$$

Proposition (Convexity)

In dimension 2, for every $0 < \gamma < 1$, there exists $\varepsilon_* = \varepsilon_*(G, \gamma)$ s.t. for every $\varepsilon < \varepsilon_*$, any minimizer of (*) is **convex**.

For any nearly spherical set E with u s.t. $||u||_{\infty} < \frac{1}{4}$, we have⁷

$$\|\nabla_{\tau} \, u\|_{\infty} \leq 2 \left(\frac{1+\|u\|_{\infty}}{1-\|u\|_{\infty}} \right) \|u\|_{\infty}^{\frac{1}{2}},$$

▶ Thus Hausdorff CV of the boundary \implies Lip CV ↓ any minimizer E_{ε} is nearly spherical, where $\|u_{\varepsilon}\|_{\text{Lip}} \leq \sqrt{\delta(\varepsilon)}$.

Proposition (Convexity)

In dimension 2, for every $0 < \gamma < 1$, there exists $\varepsilon_* = \varepsilon_*(G, \gamma)$ s.t. for every $\varepsilon < \varepsilon_*$, any minimizer of (*) is **convex**.

For any nearly spherical set E with u s.t. $||u||_{\infty} < \frac{1}{4}$, we have⁷

$$\|\nabla_{\tau} u\|_{\infty} \leq 2 \left(\frac{1+\|u\|_{\infty}}{1-\|u\|_{\infty}}\right) \|u\|_{\infty}^{\frac{1}{2}},$$

► Thus Hausdorff CV of the boundary ⇒ Lip CV
↓ any minimizer E_ε is nearly spherical, where ||u_ε||_{Lip} ≤ √δ(ε).

Theorem (B. Merlet, M.P. – Minimality of the disk)

In dimension 2, for every $0 < \gamma < 1$, the disk is the unique minimizer, up to translations, whenever $\varepsilon < \varepsilon_*$.

⁷Fuglede 1989

In higher dimensions $(n \ge 3)$

for every F s.t. $E_{\varepsilon} \triangle F \subset \subset B_r(x)$ and every $r < {\pmb{\varepsilon}} r_0(n,G,\gamma)$ \implies non-uniform

) If we had uniform $C^{1,\alpha}$ regularity estimates:

$$P(E_{\varepsilon};B_r(x)) \leq P(F;B_r(x)) + \frac{\Lambda(n,G,\gamma)}{\varepsilon} |E_{\varepsilon} \triangle F|,$$

for every F s.t. $E_{\varepsilon} \triangle F \subset \subset B_r(x)$ and every $r < {\pmb{\varepsilon}} r_0(n,G,\gamma)$ \implies non-uniform

▶ If we had uniform $C^{1,\alpha}$ regularity estimates: Hausdorff CV $\implies C^{1,\alpha}$ CV $\implies E_{\varepsilon}$ is the ball ▶ De Giorgi's strategy for local minimizers of the perimeter⁸

⁸Revisited by Maggi 2012

Uniform regularity of minimizers (1)

- ▶ De Giorgi's strategy for local minimizers of the perimeter⁸
- ▶ The (spherical) excess of E_{ε} at $x \in \partial E_{\varepsilon}$ at scale r is

$$\mathbf{e}(E_\varepsilon,x,r)\coloneqq \inf_{\nu\in\mathbb{S}^{n-1}}\frac{1}{r^{n-1}}\int_{\partial^*E_\varepsilon\cap B_r(x)}|\nu_{E_\varepsilon}(y)-\nu|^2\mathcal{H}^{n-1}(\mathrm{d} y)$$

⁸Revisited by Maggi 2012

Uniform regularity of minimizers (1)

- De Giorgi's strategy for local minimizers of the perimeter⁸
- ▶ The (spherical) excess of E_{ε} at $x \in \partial E_{\varepsilon}$ at scale r is

$$\mathbf{e}(E_\varepsilon,x,r)\coloneqq \inf_{\nu\in\mathbb{S}^{n-1}}\frac{1}{r^{n-1}}\int_{\partial^*E_\varepsilon\cap B_r(x)}|\nu_{E_\varepsilon}(y)-\nu|^2\mathcal{H}^{n-1}(\mathrm{d} y)$$

 \blacktriangleright The excess measures the variation of the normal vector to $\partial E_{arepsilon}$

⁸Revisited by Maggi 2012

Uniform regularity of minimizers (2)

▶ Rmk: since $E_{\varepsilon} \rightarrow B_1$ and $\partial E_{\varepsilon} \rightarrow \partial B_1$, we have

 $\lim_{r\to 0}\lim_{\varepsilon\to 0} {\bf e}(E_\varepsilon,x,r)=0 \quad \text{ uniformly in } x\in \partial E_\varepsilon,$

in other words, up to taking r and ε small enough, the excess is arbitrarily small in $\partial E_{\varepsilon}.$

Uniform regularity of minimizers (2)

▶ Rmk: since $E_{\varepsilon} \rightarrow B_1$ and $\partial E_{\varepsilon} \rightarrow \partial B_1$, we have

 $\lim_{r\to 0}\lim_{\varepsilon\to 0} {\bf e}(E_\varepsilon,x,r)=0 \quad \text{ uniformly in } x\in \partial E_\varepsilon,$

in other words, up to taking r and ε small enough, the excess is arbitrarily small in $\partial E_{\varepsilon}.$

▶ Then it is enough to show:

Theorem

 $\exists \alpha, \varepsilon_0, \tau, r_0 \text{ such that, if } E_{\varepsilon} \text{ is a minimizer with } \varepsilon < \varepsilon_0 \text{ satisfying} \\ \mathbf{e}(E_{\varepsilon}, x, r) < \tau, \quad \text{for some } x \in \partial E \text{ and some } r < r_0,$

then

$$\mathbf{e}(E_{\varepsilon},x,s) \leq C(n,G,\gamma) \left(\frac{s}{r}\right)^{2\alpha}, \qquad \forall s \in (0,r).$$

Uniform regularity of minimizers (2)

▶ Rmk: since $E_{\varepsilon} \rightarrow B_1$ and $\partial E_{\varepsilon} \rightarrow \partial B_1$, we have

 $\lim_{r\to 0}\lim_{\varepsilon\to 0} {\bf e}(E_\varepsilon,x,r)=0 \quad \text{ uniformly in } x\in \partial E_\varepsilon,$

in other words, up to taking r and ε small enough, the excess is arbitrarily small in $\partial E_{\varepsilon}.$

▶ Then it is enough to show:

Theorem

f

 $\exists \alpha, \, \varepsilon_0, \, \tau, \, r_0 \text{ such that, if } E_\varepsilon \text{ is a minimizer with } \varepsilon < \varepsilon_0 \text{ satisfying}$

$$\mathrm{e}(E_{arepsilon},x,r)< au, \quad ext{ for some } x\in\partial E ext{ and some } r< r_0,$$

then

$$\mathbf{e}(E_{\varepsilon},x,s) \leq C(n,G,\gamma) \left(\frac{s}{r}\right)^{2\alpha}, \qquad \forall s \in (0,r).$$

▶ By Campanato's criterion, the normal vector is $C^{0,\alpha}$, uniformly as $\varepsilon \to 0$.

▶ General idea: for $\varepsilon \ll r$, $\mathcal{F}_{\gamma,\varepsilon} \simeq (1 - \gamma)P$ in $B_r(x)$

- ▶ General idea: for $\varepsilon \ll r$, $\mathcal{F}_{\gamma,\varepsilon} \simeq (1-\gamma)P$ in $B_r(x)$
 - allows to obtain power decay of the excess down to scales $\varepsilon^{\eta} \gg \varepsilon$, $\eta \in (0, 1)$, by adapting the argument for local minimizers of the perimeter

▶ General idea: for $\varepsilon \ll r$, $\mathcal{F}_{\gamma,\varepsilon} \simeq (1-\gamma)P$ in $B_r(x)$

- allows to obtain power decay of the excess down to scales $\varepsilon^{\eta} \gg \varepsilon$, $\eta \in (0,1)$, by adapting the argument for local minimizers of the perimeter
- For $r \leq \varepsilon$, treat $P_{G_{\varepsilon}}$ as a volume term and use classical quasi-minimality

- ▶ General idea: for $\varepsilon \ll r$, $\mathcal{F}_{\gamma,\varepsilon} \simeq (1-\gamma)P$ in $B_r(x)$
 - allows to obtain power decay of the excess down to scales $\varepsilon^{\eta} \gg \varepsilon$, $\eta \in (0, 1)$, by adapting the argument for local minimizers of the perimeter
- ► For $r \leq \epsilon$, treat $P_{G_{\epsilon}}$ as a volume term and use classical quasi-minimality
- ▶ To bridge the gap between scales ε^{η} and ε , we use the naive scaling $\mathbf{e}(E_{\varepsilon}, r) \leq \left(\frac{R}{r}\right)^{n-1} \mathbf{e}(E_{\varepsilon}, R)$ whenever r < R and the decay of G at ∞

Main steps (roughly):

1. If the excess is small in $B_{2r}, \partial E_\varepsilon \cap B_r$ is almost entirely covered by a 1-Lipshitz graph Γ_u

Main steps (roughly):

- 1. If the excess is small in $B_{2r},$ $\partial E_{\varepsilon}\cap B_{r}$ is almost entirely covered by a 1-Lipshitz graph Γ_{u}
- 2. $u \text{ satisfies } (\Delta \gamma \Delta_{G_e}) u \simeq 0$, more precisely

$$\begin{split} &\int_{\mathbb{R}^{n-1}} \nabla u \cdot \nabla \varphi & + \text{``smaller terms''} \\ &- \gamma \iint_{D_{2r} \times D_{2r}} (u(x') - u(y'))(\varphi(x') - \varphi(y')) G_{\varepsilon}(x' - y', 0) = 0 \end{split}$$

 $\text{for every } \varphi \in C^1_c(D_r) \text{ s.t. } \|\nabla \varphi\|_\infty = 1.$

Main steps (roughly):

- 1. If the excess is small in $B_{2r}, \partial E_{\varepsilon}\cap B_r$ is almost entirely covered by a 1-Lipshitz graph Γ_u
- 2. $u \text{ satisfies } (\Delta \gamma \Delta_{G_e}) u \simeq 0$, more precisely

$$\begin{split} &\int_{\mathbb{R}^{n-1}} \nabla u \cdot \nabla \varphi & + \text{``smaller terms''} \\ &- \gamma \iint_{D_{2r} \times D_{2r}} (u(x') - u(y'))(\varphi(x') - \varphi(y')) G_{\varepsilon}(x' - y', 0) = 0 \end{split}$$

 $\text{for every } \varphi \in C^1_c(D_r) \text{ s.t. } \|\nabla \varphi\|_\infty = 1.$

3. Since $\varepsilon \ll r$, **u** is close to a harmonic function

4. Thus the flatness of E_{ε} at a smaller scale λr is much smaller than the excess at scale r: $\mathbf{f}(\lambda r) \lesssim \lambda^2 \mathbf{e}(r)$

- 4. Thus the **flatness** of E_{ε} at a smaller scale λr is **much smaller** than the excess at scale r: $\mathbf{f}(\lambda r) \lesssim \lambda^2 \mathbf{e}(r)$
- 5. Caccioppoli-type inequality (=reverse Poincaré) :

$$\mathbf{e}(\lambda r/2) \lesssim \mathbf{f}(\lambda r) + \left(\frac{\varepsilon}{r}\right)^{\theta} \mathbf{e}(\lambda r) + Q_{1-\theta}\left(\frac{r}{\varepsilon}\right)$$

where

$$Q_{1-\theta}\left(R\right) \coloneqq \int_{\mathbb{R}^n \backslash B_{R^{1-\theta}}} \lvert x \rvert G(x) \, \mathrm{d}x$$

 \vdash relies on a **refined quasi-minimality condition** for E_{ε}

- 4. Thus the **flatness** of E_{ε} at a smaller scale λr is **much smaller** than the excess at scale r: $\mathbf{f}(\lambda r) \lesssim \lambda^2 \mathbf{e}(r)$
- 5. Caccioppoli-type inequality (=reverse Poincaré) :

$$\mathbf{e}(\lambda r/2) \lesssim \mathbf{f}(\lambda r) + \left(\frac{\varepsilon}{r}\right)^{\theta} \mathbf{e}(\lambda r) + Q_{1-\theta}\left(\frac{r}{\varepsilon}\right)$$

where

$$Q_{1-\theta}\left(R\right) \coloneqq \int_{\mathbb{R}^n \backslash B_{R^{1-\theta}}} \lvert x \rvert G(x) \, \mathrm{d}x$$

6. Iterating, we get power decay of the excess.

- \blacktriangleright Minimizers have $C^{1,\alpha}$ boundary, with regularity constants not depending on ε
- For small ε , any minimizer is nearly spherical

Theorem (M. Goldman, B. Merlet, M.P. – Minimality of the ball)

For every $n \geq 2$ and every $0 < \gamma < 1$, there exists $\varepsilon_* > 0$ s.t. the unit ball is the unique minimizer of (*), up to translations, as long as $\varepsilon < \varepsilon_*$.

Thank you!

▶ In the ball B_r , we consider variations $f_t(x) = x + tT(x)$ where $T(x) = \varphi(x')e_n$, $\varphi \in C_c^{\infty}(D_r)$, and competitors $E_t = f_t(E_{\varepsilon})$

▶ In the ball B_r , we consider variations $f_t(x) = x + tT(x)$ where $T(x) = \varphi(x')e_n$, $\varphi \in C_c^{\infty}(D_r)$, and competitors $E_t = f_t(E_{\varepsilon})$ ▶ "Localized" Euler-Lagrange

$$\begin{split} &\int_{\partial^* E_{\varepsilon} \cap B_{2r}} \nu_{E_{\varepsilon}} \cdot (\nabla T \nu_{E_{\varepsilon}}) &+ \text{``smaller terms''} \\ &+ 2\gamma \int_{\partial^* E_{\varepsilon} \cap B_{2r}} \int_{E_{\varepsilon} \cap B_{2r}} G_{\varepsilon}(x-y) (T_x - T_y) \cdot \nu_{E_{\varepsilon}}(y) \, \mathrm{d}x \, d\mathcal{H}_y^{n-1} = 0 \end{split}$$

- ▶ In the ball B_r , we consider variations $f_t(x) = x + tT(x)$ where $T(x) = \varphi(x')e_n$, $\varphi \in C_c^{\infty}(D_r)$, and competitors $E_t = f_t(E_{\varepsilon})$
- ▶ "Localized" Euler-Lagrange + using $E_{\varepsilon} \simeq \Gamma_u^-$ in B_{2r}

$$\begin{split} &\int_{\partial^* E_{\varepsilon} \cap B_{2r}} \nu_{E_{\varepsilon}} \cdot (\nabla T \nu_{E_{\varepsilon}}) &+ \text{``smaller terms''} \\ &+ 2\gamma \int_{\partial^* E_{\varepsilon} \cap B_{2r}} \int_{E_{\varepsilon} \cap B_{2r}} G_{\varepsilon}(x-y) (T_x - T_y) \cdot \nu_{E_{\varepsilon}}(y) \, \mathrm{d}x \, d\mathcal{H}_y^{n-1} = 0 \end{split}$$

- ▶ In the ball B_r , we consider variations $f_t(x) = x + tT(x)$ where $T(x) = \varphi(x')e_n$, $\varphi \in C_c^{\infty}(D_r)$, and competitors $E_t = f_t(E_{\varepsilon})$
- \blacktriangleright "Localized" Euler–Lagrange + using $E_{\varepsilon}\simeq \Gamma_{u}^{-}$ in B_{2r}

$$\begin{split} &\int_{\Gamma_u \cap B_{2r}} \nu_{\Gamma_u^-} \cdot (\nabla T \nu_{\Gamma_u^-}) &+ \text{``smaller terms''} \\ &+ 2\gamma \int_{\Gamma_u \cap B_{2r}} \int_{\Gamma_u^- \cap B_{2r}} G_\varepsilon(x-y) (T_x - T_y) \cdot \nu_{\Gamma_u^-}(y) \,\mathrm{d}x \,d\mathcal{H}_y^{n-1} = 0 \end{split}$$
u is almost harmonic (2)

$$\begin{array}{l} \blacktriangleright \mbox{ Rewrites} \\ \int_{\mathbb{R}^{n-1}} \frac{\nabla u \cdot \nabla \varphi}{\sqrt{1+|\nabla u|^2}} & + \mbox{ "smaller terms"} \\ -2\gamma \int_{D_{2r}} \int_{D_{2r}} \int_{-r} \int_{-r}^{u(x')} (\varphi(x') - \varphi(y')) G_{\varepsilon}(x' - y', t - u(y')) \, \mathrm{d}t \, \mathrm{d}x' \, \mathrm{d}y' = 0 \end{array}$$

u is almost harmonic (2)

u is almost harmonic (2)

that is, $(\Delta - \gamma \Delta_{G_{\varepsilon}}) u \simeq 0$ in B_r .

▶ Setting
$$\mathscr{E}(E,t) = P(E; D_t \times (-1,1)) - \mathcal{H}^{n-1}(D_t)$$

(imagine $\mathscr{E}(E_{\varepsilon}, t) \simeq \mathbf{e}(E_{\varepsilon}, B_t)$),
by minimality we show

 $\mathscr{E}\!(E_\varepsilon,t) \lesssim C \mathscr{E}\!(F,t) + C \big[\mathscr{E}\!(E_\varepsilon,t+\varepsilon^\theta) - \mathscr{E}\!(E_\varepsilon,t) \big] + Q_{1-\theta}(1/\varepsilon) \simeq 0,$

for every competitor F s.t. $E_{\varepsilon} \triangle F \subset B_t$.

▶ Setting
$$\mathscr{C}(E,t) = P(E; D_t \times (-1,1)) - \mathcal{H}^{n-1}(D_t)$$

(imagine $\mathscr{C}(E_{\varepsilon}, t) \simeq \mathbf{e}(E_{\varepsilon}, B_t)$),
by minimality we show

 $\mathscr{E}(E_{\varepsilon},t) \lesssim C\mathscr{E}(F,t) + C[\mathscr{E}(E_{\varepsilon},t+\varepsilon^{\theta}) - \mathscr{E}(E_{\varepsilon},t)] + Q_{1-\theta}(1/\varepsilon) \simeq 0,$

for every competitor F s.t. $E_{\varepsilon} \triangle F \subset B_t$.

▶ We take "cone-like" competitors (Maggi) such that

$$\mathscr{E}(F,t)\simeq \sqrt{\mathscr{E}(E_\varepsilon,2t)}\mathrm{flatness}(E_\varepsilon,2t)$$

▶ Setting
$$\mathscr{C}(E,t) = P(E; D_t \times (-1,1)) - \mathcal{H}^{n-1}(D_t)$$

(imagine $\mathscr{C}(E_{\varepsilon}, t) \simeq \mathbf{e}(E_{\varepsilon}, B_t)$),
by minimality we show

 $\mathscr{E}(E_{\varepsilon},t) \lesssim C\mathscr{E}(F,t) + C[\mathscr{E}(E_{\varepsilon},t+\varepsilon^{\theta}) - \mathscr{E}(E_{\varepsilon},t)] + Q_{1-\theta}(1/\varepsilon) \simeq 0,$

for every competitor F s.t. $E_{\varepsilon} \triangle F \subset B_t$.

▶ We take "cone-like" competitors (Maggi) such that

$$\mathscr{E}(F,t)\simeq \sqrt{\mathscr{E}(E_\varepsilon,2t)}\mathrm{flatness}(E_\varepsilon,2t)$$

We get (weak Caccioppoli)

$$\mathbf{e}(E_{\varepsilon},r) \lesssim \sqrt{\mathbf{e}(E_{\varepsilon},2r)\mathbf{f}(E_{\varepsilon},2r)} + \left(\frac{\varepsilon}{r}\right)^{\theta}\mathbf{e}(E_{\varepsilon},2r) + Q_{1-\theta}(r/\varepsilon)$$

▶ Setting
$$\mathscr{C}(E,t) = P(E; D_t \times (-1,1)) - \mathcal{H}^{n-1}(D_t)$$

(imagine $\mathscr{C}(E_{\varepsilon}, t) \simeq \mathbf{e}(E_{\varepsilon}, B_t)$),
by minimality we show

 $\mathscr{E}(E_{\varepsilon},t) \lesssim C\mathscr{E}(F,t) + C[\mathscr{E}(E_{\varepsilon},t+\varepsilon^{\theta}) - \mathscr{E}(E_{\varepsilon},t)] + Q_{1-\theta}(1/\varepsilon) \simeq 0,$

for every competitor F s.t. $E_{\varepsilon} \triangle F \subset B_t$.

▶ We take "cone-like" competitors (Maggi) such that

$$\mathscr{E}(F,t)\simeq \sqrt{\mathscr{E}(E_{\varepsilon},2t)}\mathrm{flatness}(E_{\varepsilon},2t)$$

We get (weak Caccioppoli)

$$\mathbf{e}(E_{\varepsilon},r) \lesssim \sqrt{\mathbf{e}(E_{\varepsilon},2r)\mathbf{f}(E_{\varepsilon},2r)} + \left(\frac{\varepsilon}{r}\right)^{\theta}\mathbf{e}(E_{\varepsilon},2r) + Q_{1-\theta}(r/\varepsilon)$$

By a covering argument, we deduce (strong Caccioppoli)

$$\mathbf{e}(E_{\varepsilon},r) \lesssim \mathbf{f}(E_{\varepsilon},2r) + \left(\frac{\varepsilon}{r}\right)^{\theta} \mathbf{e}(E_{\varepsilon},2r) + Q_{1-\theta}(r/\varepsilon)$$