Parameters Estimation of the Ding and al. Model to Optimize the Muscular Response to FES to Design a Smart Electrostimulator

S. Gayrard

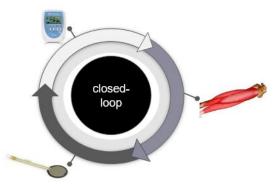
Table of contents

- 1 Introduction
 - Industrial Project
 - Mathematical Equations
- 2 Smart Electrostimulator
 - Materials and methods
 - Training program : algorithm
- 3 Estimation of the Ding and al. parameters
 - Data-fitting
 - Practical Estimation
 - Implementation of an observer for the estimation of the fatigue parameters A and K_m .
- 4 Conclusion

- 1 Introduction
 - Industrial Project
 - Mathematical Equations
- 2 Smart Electrostimulator
 - Materials and methods
 - Training program: algorithm
- 3 Estimation of the Ding and al. parameters
 - Data-fitting
 - Practical Estimation
 - Implementation of an observer for the estimation of the fatigue parameters A and K_m .
- 4 Conclusion

Industrial Project

- Design of a smart electrostimulator
- Isometric case, without displacement of the muscle
- Modern sensors
- Fast computations
- Design training programs
 - to track a force reference
 - to maximize the muscular force
- Training program converted into an optimization problem



Mathematical Equations

The input u of a pulse train is defined, for $t \in [0, tf]$ y:

$$u(t) = \sum_{i=0}^{n} \delta(t - t_i) \tag{1}$$

with $0 = t_0 < t_1 < \cdots < t_n < \mathsf{tf}$ impulse times with $n \in \mathbb{N}$ fixed.

The dynamics is given by:

$$\dot{E}(t) + \frac{E(t)}{\tau_c} = \frac{1}{\tau_c} \sum_{i=0}^{n} \eta_i R_i \delta(t - t_i), \tag{2}$$

with E(0) = 0, η_i is the amplitude of the electric pulse stimulation, τ_c the response time and the function R_i defined by $R_i = 1$ if i = 0 and $R_i = 1 + (R_0 - 1)e^{-\frac{t_i - t_{i-1}}{\tau_c}}$ elsewhere .

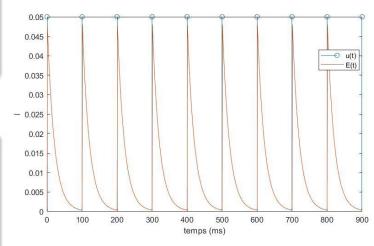


fig : E(t), T = 100ms

$$\dot{c}_N(t) + \frac{c_N(t)}{\tau_c} = E(t), \tag{3}$$

The dynamics is given by:

$$m_1(t) = \frac{c_N(t)}{K_m + c_N(t)}, \quad m_2(t) = \frac{1}{\tau_1 + \tau_2 m_1(t)},$$
 (4)

with m_1 the *Michaelis-Menten* (1913) function. The muscular force response satisfied the Hill-Huxley's models dynamics.

$$\dot{F}(t) = -m_2(t) F(t) + m_1(t) A, \tag{5}$$

with τ_c , R_0 , A_0 , K_m , τ_1 , τ_2 the set of parameters

$$F(t) = A_0 M(t) \int_0^t M^{-1}(s) m_1(s) ds, \tag{6}$$

with
$$M(t) = \exp\left(-\int_0^t m_2(s) ds\right)$$
.

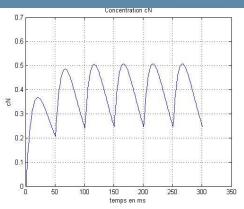


fig : cN(t), T = 50ms

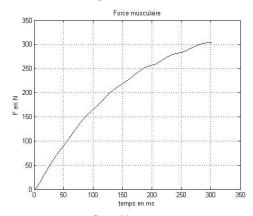


fig: F(t), T = 50ms

Mathematical Equations

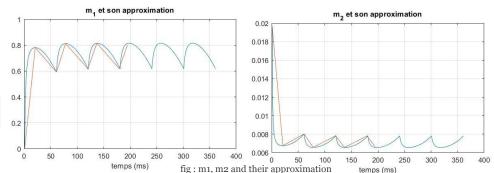
Construction of the approximation of the muscular force *F* on $[t_{k_t+j_t/p}, t_{k_t+(j_t+1)/p}], k_t = 0, \dots, n, j_t = 0, \dots, p-1$ is given by :

$$\tilde{F}(t) = A_0 M(t) \int_0^t \tilde{M}^{-1}(s) \tilde{m}_1(s) ds,$$
 (7)

with $\tilde{M}(t) = \exp\left(-\int_0^t \tilde{m}_2(s) \, ds\right)$, et \tilde{m}_i , i = 1, 2 an approximation of m_i defined by :

$$\tilde{m}_i(t) = a_{ij,k} (t - t_{k+j/p}) + b_{ij,k}, \text{ for } t \in [t_{k+j/p}, t_{k+(j+1)/p}]$$

and $k = 0, \ldots, n, j = 0, \ldots, p - 1$. The constants $a_{ii,k}, b_{ii,k}$, $j = 0, \dots, p - 1$ are calculed at specific times, depending on the choice on the approximation of m_i .



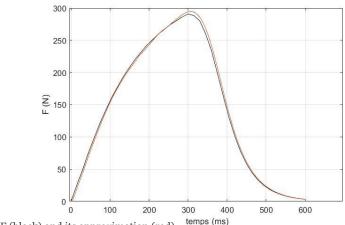


fig: F (black) and its approximation (red)

The approximation of the muscular force F on $[t_{k_t+j_t/p}, t_{k_t+(j_t+1)/p}], k_t = 0, \dots, n, j_t = 0, \dots, p-1$ is given by :

$$\tilde{F}(t)/A_{0} = \sum_{i=0}^{k_{t}-1} \sum_{j=0}^{p-1} \int_{t_{i+j/p}}^{t_{i+(j+1)/p}} \tilde{M}(t) \tilde{M}^{-1}(s) \, \tilde{m}_{1}(s) \, ds
+ \sum_{j=0}^{j_{t}-1} \int_{t_{k_{t}+j/p}}^{t_{k_{t}+(j+1)/p}} \tilde{M}(t) \tilde{M}^{-1}(s) \, \tilde{m}_{1}(s) \, ds
+ \int_{t_{k_{t}+j_{t}/p}}^{t} \tilde{M}(t) \tilde{M}^{-1}(s) \, \tilde{m}_{1}(s) \, ds.$$
(8)

From a practical point of view, we just need to estimate the values of the force F for $t_{k+j/p}$, which gives :

$$\tilde{F}(t_{k+j/p})/A_0 = \sum_{i=0}^{k-1} \sum_{j=0}^{p-1} \int_{t_{i+j/p}}^{t_{i+(j+1)/p}} \tilde{M}(t_{k+j/p}) \tilde{M}^{-1}(s) \, \tilde{m}_1(s) \, ds
+ \sum_{j=0}^{j-1} \int_{t_{k+j/p}}^{t_{k+(j+1)/p}} \tilde{M}(t_{k+j/p}) \tilde{M}^{-1}(s) \, \tilde{m}_1(s) \, ds$$
(9)

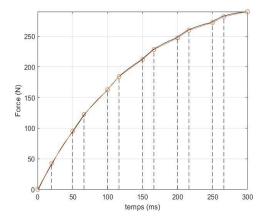
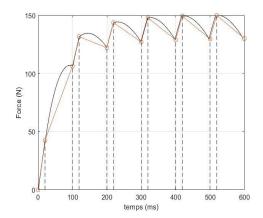
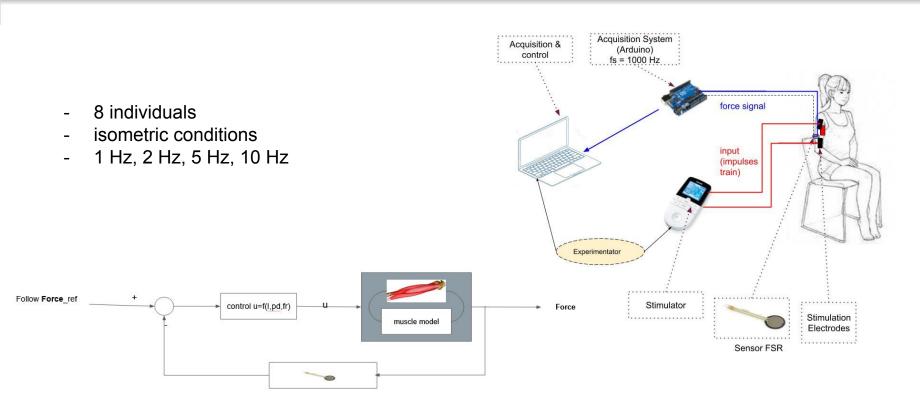


fig: (8) illustrated in black, (9) illustrated in red

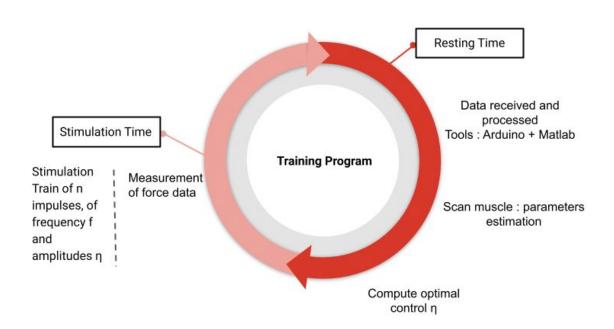


- 1 Introduction
 - Industrial Project
 - Mathematical Equations
- 2 Smart Electrostimulator
 - Materials and methods
 - Training program : algorithm
- 3 Estimation of the Ding and al. parameters
 - Data-fitting
 - Practical Estimation
 - Implementation of an observer for the estimation of the fatigue parameters A and K_m .
- 4 Conclusion

Materials and methods Training program: algorithm



Materials and methods Training program : algorithm



- 1 Introduction
 - Industrial Project
 - Mathematical Equations
- 2 Smart Electrostimulator
 - Materials and methods
 - Training program: algorithm
- 3 Estimation of the Ding and al. parameters
 - Data-fitting
 - Practical Estimation
 - Implementation of an observer for the estimation of the fatigue parameters A and K_m .

Data-fitting
Practical Estimation
Implementation of an observer for the estimation of the fatigue par

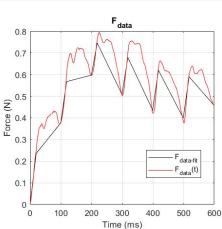
Model (9) gives the approximation of the force in terms of a set α of 6 parameters and $t_{k+j/p}$ with k = 0, ..., n (n number of pulses during the train), j = 0, ..., p-1 and $p \in \mathbb{N}^*$ the number of the new points added between t_k and t_{k+1} . $\alpha = [\tau_c, R_0, A_0, K_m, \tau_1, \tau_2]$.

Data For each bounce k, the average value is calculated using the data value F_{data} :

$$\bar{F}_{[t_k,t_{k+1}]} = \frac{1}{t_{k+1}-t_k} \int_{t_k}^{t_{k+1}} F_{data}(t) dt$$

The vector of data force, is defined for each impulse $k \in [1, n-1]$ by $F_{data-fit} = [F_{data}(t_k), \bar{F}_{[t_k, t_{k+1}]}]$

 $F_{data-fit} = [F_{data}(t_1), \bar{F}_{[t_1,t_2]}, \dots, F_{data}(t_{n-1}), \bar{F}_{[t_{n-1},t_n]}]$



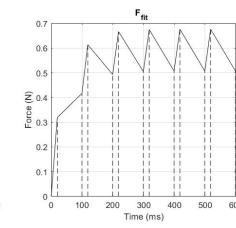


Fig. At the right, F_{fit} with the dashed curves corresponding to the times $t_{k+j/p}$. At the left, $F_{data}(t)$ and $F_{data-fit}$ the vector of values which contains the data that will be fitted to the model. p=2 and n=6.

Practical Estimation

Implementation of an observer for the estimation of the fatigue pa

Each value of $F_{data-fit}$ fits the model $F(t_{k+j/p})$ which corresponds to the approximation force calculated for each impulse time t_k and for $t_{k+j/p}$, the intermediate times between 2 pulses.

For $k \in [1, n]$, the values $F_{data}(t_k)$ fit $\tilde{F}(t_k)$ and the values $\bar{F}_{[t_k, t_{k+1}]}$ fit $\tilde{F}(t_{k+j/p})$ (p = 2 and j = 1). The cost function to minimize is described below:

$$J(\alpha) = \sum_{i=1}^{N} \|\tilde{F}_i(t_{k+j/p}, \alpha) - F_{i,data-fit}\|_2^2$$

 $\alpha = [\tau_c, R_0, A_0, K_m, \tau_1, \tau_2]$. *N* the size of the data and the fit

vectors (N = n.p).

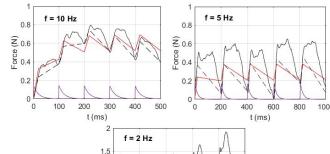
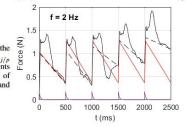


Fig. 5. The black curve corresponds to the force data measured with the FSR sensor. The dashed curve is the average force data measured at $t_{k+j/p}$ with $k=0,\ldots,n,\ j=0,\ldots,p-1$ and $p\in\mathbb{N}^*$ the number of the new points added between t_k and t_{k+1} . The red curve represents the approximation of the force that fits the measured data. Values of the constants are n=5 and p=2. The computation time is less than 2s.



The resulting error (%) between the measured data $F_{data-fit}$ and the estimated model response F_{fit} is defined as follows:

$$E(\%) = \frac{\sum_{i} (F_{data-fit} - F_{fit})^{2}}{\sum_{i} (F_{data-fit})^{2}} \times 100$$

Table 1: Modeling errors calculated for the different subjects, according to the stimulation frequencies.

E (%)	2Hz	5Hz	10Hz
subjet 1	9,50	12,89	17,89
subjet 2	11,06	26,87	13,39
subjet 3	2,36	11,49	30,57
subjet 6	32,35	20,89	/
subjet 8	12,9	8,61	10,41

Table 2: Estimated experimental parameters for one individual biceps for different stimulation frequency.

α	τ_c (ms)	R_0	K_m	A_0 (N/ms)	τ ₁ (ms)	τ_2 (ms)
1Hz	19.83	1.14	4.38	1.31	50.91	124.39
2Hz	19.86	1.14	4.82	1.14	50.88	124.40
5Hz	19.87	1.13	4.87	0.77	50.83	124.39
ā	19.82	1.13	4.69	0.94	50.86	124.39
α_{Ding}	20	1.14	0.1030	3.009	50.95	124.40

ractical Estimation

Implementation of an observer for the estimation of the fatigue par

We consider the non-linear system:

$$\begin{cases} \dot{x} = f(x, u) \\ y = h(x) \end{cases}$$
 (10)

with $x \in \mathbb{R}$ and $y \in \mathbb{R}$, the single output.

Universal or admissible input

An input u is said to be universal if it distinguishes any pair of distinct points (x_1, x_2) on [0, T] (i.e., $\exists t \in [t_0, t_0 + T]$) such that $y(t, x_1, t_0, u) \neq y(t, x_2, t_0, u)$. Otherwise u is a singular input.

Rank condition

The nonlinear system (10) is observable in the sense of rank if

rank
$$\frac{\partial}{\partial x}$$
 $\begin{bmatrix} h(x) \\ L_f h(x) \\ ... \\ L_f^{n-1} h(x) \end{bmatrix}$ = n, with $L_f^j h(x)$ the successive Lie

derivatives of the output h(x) and $L_f^0 h(x) = h(x)$.

Uniform observability

The system (10) is said to be uniformly observable if, for all T>0, any input $u:[0,T]\mapsto U$ is universal. In the case where the set of inputs U is not universal, we can define a smaller set of universal inputs $\tilde{U}\subset U$, we say that the system is locally observable on \tilde{U} .

Model

- inputs u are bounded in $[\beta_0, \beta_1]$ small
- change of scale $\eta \Rightarrow \eta \epsilon$ (where η describes the amplitude of the stimulation and ϵ is a very small quantity)
- $u(t) = c_N(t)\epsilon$

$$f = A_0 m 1(t) - F(t) m_2(t) = A_0 \frac{c_N(t)\epsilon}{K_{m_0} + c_n(t)\epsilon} - F(t) \frac{1}{\tau_1 + \tau_2 \frac{c_n(t)\epsilon}{K_m + c_n(t)\epsilon}}$$

Using Taylor series with a first order, we have:

$$f(F(t),c_N(t)) = \frac{A_0c_N(t)}{K_{m_0}}\epsilon - \frac{F(t)}{\tau_1} + \frac{c_N(t)F(t)\tau_2}{K_{m_0}\tau_1^2}\epsilon + o(\epsilon^2)$$

The equations of (10) are:

$$f(x,u) = \begin{cases} x_2 u(t) - x_1 \left(\frac{1}{\tau_1} - \frac{\tau_2 u(t)}{x_3 \tau_1^2}\right) \\ 0 \\ 0 \end{cases}$$
 (11)

with $h(x) = x_1$, $x = [F, \frac{A_0}{K_{m_0}}, K_{m_0}] \in \mathbb{R}^3$, $y \in \mathbb{R}$. f and h are C^{∞} . The inputs $u(t) = a + b \cos(2\pi f t)$ are bounded for t in $[t_i, t_{i+1}]$,

The inputs $u(t) = u + v \cos(2hft)$ are bounded for t in $[t_i, t_{i+1}]$, i = [1, n], n number of pulses in a train. This form modelizes the dynamics of (3) with the bounces. The functions f and h are C^{∞} .

Practical Estimation
Implementation of an observer for the estimation of the fatigue par

We introduce the change of variable:

$$\Phi = \begin{cases} \Phi : \mathbb{R}^3 \mapsto \mathbb{R}^3 \\ x \mapsto \Phi(x) = [h(x), L_f h(x), L_f^2 h(x)] \end{cases}$$
(12)

with

$$\begin{cases} h(x(t)) = x_1 \\ L_f h(x(t)) = x_2 u(t) - x_1 \left(c - \frac{du(t)}{x_3}\right) \\ L_f^2 h(x(t)) = x_2 \dot{u}(t) + L_f h(x(t)) \left(\frac{du(t)}{x_3} - c\right) + \frac{x_1 d\dot{u}(t)}{x_3} \end{cases}$$
(13)

with $c = \frac{1}{\tau_1}$ et $d = \frac{\tau_2}{\tau_1^2}$. The system (10) is written in the new coordinates $z = \Phi(x)$, in a observability canonical form. We say that Φ is a diffeomorphism.

$$\begin{cases} \dot{z} = Az(t) + \rho(z(t, u(t))) \\ y(t) = h(z) \end{cases}$$
 (14)

with
$$A = \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{bmatrix}$$
 and $C = [1, 0, 0]$.

and
$$\rho(z(t), u(t)) = \begin{bmatrix} 0 \\ 0 \\ L_f^3 h(x(t)) \end{bmatrix}$$
 is bounded with respect to z

and $u \in \tilde{U}$. And $L_f^3 h(x(t))$ is a function of u, \dot{u} and \dot{x}_2 .

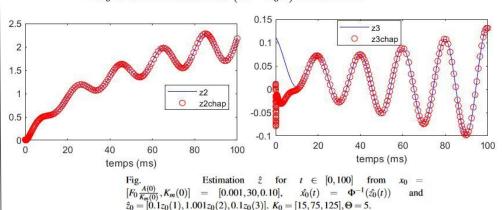
Theorem

If (A,C) is observable and is under the previous conditions, then the system (14) admits an observer of the form:

$$\hat{z} = A\hat{z} + \rho(\hat{z}, u) + S^{-1}K_0(y(t) - \hat{z}(t))$$

where:

- $\Theta \in \mathbb{R}$ is an observer setting parameter which allows to play on the speed of convergence of the observer.
- *S* is a symmetric positive definite matrix given by the Lyapunov equation $\Theta S + A^T S + S A = C^T C$.
- K_0 is defined such that $(A K_0C)$ is Hurwitz.

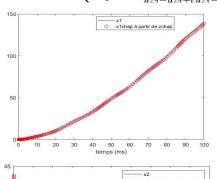


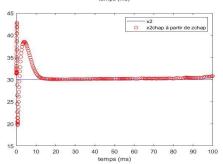
Practical Estimation
Implementation of an observer for the estimation of the fatigue par

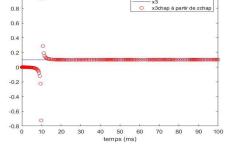
Once the state vector z(t) is estimated, we can go back to the estimate of x(t) by $\hat{x}(t) = \Phi^{-1}(\hat{z}(t))$.

We have:

$$\begin{cases} x_1 = z_1 \\ x_2 = \frac{u\dot{u}z_1^2 + \dot{u}z_1z_2 - uz_3z_1 + uz_2^2}{u^2z_2} \\ x_3 = -\frac{d\dot{u}^2z_2}{\dot{u}z_2 - uz_2 + c\dot{u}z_1 - cuz_2} \end{cases}$$







$$u^2 z_2 \neq 0 \Rightarrow \begin{cases} u \neq 0 \\ z_2 \neq 0 \end{cases}$$

$$\dot{u}z_2 - uz_3 + c\dot{u}z_1 - cuz_2 \neq 0$$

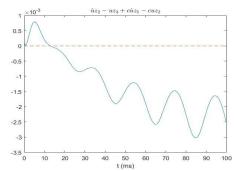


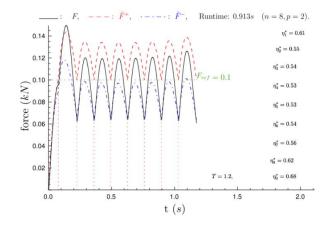
Fig. Estimation
$$\hat{x}$$
 for $t \in [0,100]$ from $x_0 = [F_0 \frac{A(0)}{K_m(0)}, K_m(0)] = [0.001, 30, 0.10], \quad \hat{x_0}(t) = \Phi^{-1}(\hat{z_0}(t))$ and $\hat{z_0} = [0.1z_0(1), 1.001z_0(2), 0.1z_0(3)]. \quad K_0 = [15, 75, 125], \Theta = 5.$

- 1 Introduction
 - Industrial Project
 - Mathematical Equations
- 2 Smart Electrostimulator
 - Materials and methods
 - Training program : algorithm
- 3 Estimation of the Ding and al. parameters
 - Data-fitting
 - Practical Estimation
 - Implementation of an observer for the estimation of the fatigue parameters A and K_m .
- 4 Conclusion

a) Endurance program: We consider a single train [0,T] on which the corresponding problem is:

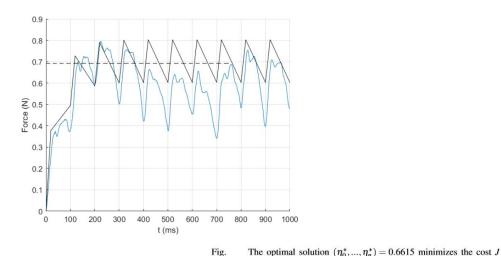
$$\min_{x} \int_{0}^{T} |F(t) - F_{ref}|^{2} dt \tag{17}$$

The amplitudes are optimization variables $(\lambda = (\eta_1, \eta_2, ..., \eta_n))$, which belong to the finite dimensional input-space $I \in [0,1]^{n+1}$ defined by amplitude constraints: $\eta_i \in [0,1]$, $i=0,\ldots,n$, with n a fixed integer, representing the number of pulses in the train. T is the time of the end of the pulse train. The reference force F_{ref} is adjusted in relation with the user.



$$\min_{\eta_i} \tilde{J}_1 = \min_{\eta_i} \sum_{k=1}^n \|\tilde{F}_k(t_{k+j/p}, \alpha, \eta_i) - F_{ref}\|_2^2$$
 (19)

with
$$\alpha = [\tau_c, R_0, A_0, K_m, \tau_1, \tau_2].$$



from (19). The black curve is the approximation force \tilde{F} , the blue curve is $F_{mesured}$ the data force measured with FSR sensor. The dashed curve is F_{ref} . Values of the constants are $\tau_c = 19.74 \mathrm{ms}$, $K_m = 6.86$, $R_0 = 1.10$, $A_0 = 0.68$, $\tau_1 = 50.84 \mathrm{ms}$, $\tau_2 = 124.39 \mathrm{ms}$, n = 10, $F_{ref} = 0.7$ N, the impulse frequency is constant and f = 10 Hz. Computation time is less than 3s.

Fig. The optimal solution $(\eta_0^*,...,\eta_n^*)$ minimizes the cost \tilde{J}_1 from (19). \tilde{F}^+ and \tilde{F}^- are respectively the upper and the lower approximation of F, described in the article [5]. $F_{ref} = 0.1$ kN.

REFERENCES

- [1] J. Ding, A.S. Wexler, S.A Binder-Macleod, Development of a mathematical model that predicts optimal muscle activation patterns by using brief trains, J. Appl.Physiol., vol. 88, 2000, pp 917-925.
- [2] E. Wilson, Force response of locust skeletal muscle, Southampton University, Ph.D. thesis, 2021.
- [3] T. Bakir, B. Bonnard, L. Bourdin, J. Rouot, Pontryagin-type conditions for optimal muscular force response to functional electrical stimulations, J. Optim. Theory Appl., 2020, pp. 184:581–602.
- [4] B. Doll, N. Kirsch, N. Sharma, Optimization of a stimulation train based on a predictive model of muscle force and fatigue, IFAC-PapersOnLine, vol. 48(20), 2015, pp. 338-342.
- [5] T. Bakir, B. Bonnard, S. Gayrard, J. Rouot, Finite Dimensional Approximation to Muscular Response in Force-Fatigue Dynamics using Functional Electrical Stimulation, Automatica, 2022.
- [6] J. Ding, A.S. Wexler, S.A Binder-Macleod, Two-step, predictive, isometric force model tested on data from human and rat muscles, J. Appl.Physiol., vol. 85, 1998, pp. 2176–2189.
- [7] D. Del Vecchio, R.M. Murray, Observability and local observer construction for unknown parameters in linearly and nonlinearly parameterized systems, Proceedings of the 2003 American Control Conference, 2003.