INFERING VARIFOLD STRUCTURE FROM THE DATA

Charly Boricaud and Blanche Buet

Inria Datashape, Laboratoire de Mathématiques d'Orsay

Context

Manifold estimation has been deeply investigated in the C^k regularity model in [1]. However, data do not always lie on such a regular shape, our goal is to study geometric estimators under weaker hypothesis from the geometric measure theory standpoint [2]. For this purpose we use the varifolds framework, a weak version of manifold born in the 60's that is well adapted to surface approximation and that we now intend to analyse from a statistical perspective. Our approach take root in the seminal work [4].

Ahlfors regular measure

Definition 3 (Ahlfors regular measure). Let μ be a Radon measure in \mathbb{R}^n , for d > 0, we say that μ is a d-Ahlfors regular measure if $\exists C_0 > 0$ such that $\forall x \in supp(\mu) = S$, $\forall r \in]0, diam(S)]$:

$$\frac{1}{C_0}r^d \le \mu(B(x,r)) \le C_0 r^d.$$

Examples: sphere, square, Koch snowflake, four-corner Cantor,...

Rectifiability

Definition 4 (d-rectifiable set). A set S is d-rectifiable if there ex-

Density Estimators

The framework is the following:

- $S \subset \mathbb{R}^n$ d-dimensional set: $\mathcal{H}^d(S) < +\infty$
- $\mu = \theta \mathcal{H}^d_{|S}$ d-Ahlfors probability measure
- $N \in \mathbb{N}$ and μ_N the empirical measure
- choose $\eta : \mathbb{R} \to \mathbb{R}_+$ satisfying $supp(\eta) \subset [-1, 1]$ and $||\eta||_{\infty} + Lip(\eta) \le 1$

For $\delta > 0$ we introduce

$$\forall x \in \mathbb{R}^n, \quad \theta_{\delta,N}(x) := \frac{1}{c_\eta \delta^d} \int_{\mathbb{R}^n} \eta\left(\frac{|x-y|}{\delta}\right) d\mu_N(y)$$

and

 $\theta_{\delta}(x) := \frac{1}{c_{\eta}\delta^d} \int_{\mathbb{R}^n} \eta\left(\frac{|x-y|}{\delta}\right) d\mu(y)$

Question

Given:

• a d- dimensional object S example: 2-sphere in \mathbb{R}^3

• a set of points $\{x_i\}_{i=1...N}$ sampling S example: a scan acquisition of S

Problem: How to attribute weights $\{m_i\}_{i=1...N}$ so as to correct sampling irregularities: we want that $\sum_{i=1}^{N} m_i \delta_{x_i}$ is close to the superficial measure \mathcal{H}^d_{LS} .

Statistical framework

We model the non uniformity of the sampling by a density θ : we assume that we have access to i.i.d samples X_1, \ldots, X_N following the same law $\mu = \theta \mathcal{H}_{LS}^d$.

Definition 1 (Empirical measure). Let $N \in \mathbb{N}^*$, X_1, \ldots, X_N be N random independent variables with the same law μ , the associated empirical measure μ_N is defined as:

ists a countable family $(f_i)_{i \in \mathbb{N}}$ of Lipschitz maps from \mathbb{R}^d to \mathbb{R}^n such that

$$\mathcal{H}^d\bigg(S\setminus\bigcup_{i\in\mathbb{N}}f_i(\mathbb{R}^d)\bigg)=0$$

Definition 5 (Rectifiable measures). Let μ be a Radon measure in \mathbb{R}^n . We say that μ is d-rectifiable if there exist a d-rectifiable set S and a Borel function $\theta : S \mapsto \mathbb{R}_+$ such that $\mu = \theta \mathcal{H}^d_{|S}$.

Now we want to analyse the local behaviour of our Radon measure μ around $x \in \mathbb{R}^n$, we use the rescaled measures for r > 0:

 $\mu_{x,r}(B) := \mu(x + rB) \qquad \text{for } B \in Bor(\mathbb{R}^n)$

Fig. 2: Zoom the map to understand the local behaviour

Theorem 1. Let $(\delta_N)_{N \in \mathbb{N}^*}$ be a positive sequence tending to 0 and such that $\delta_N N^{\frac{1}{d}} \xrightarrow[N \to +\infty]{} +\infty$, then for \mathcal{H}^d -a.e. $x \in S$,

$$\mathbb{E}\left[\left|\theta_{\delta_N,N}(x) - \theta(x)\right|\right] \leq C \frac{N^{-\frac{1}{d}}}{\delta_N} + \left|\theta_{\delta_N}(x) - \theta(x)\right| \xrightarrow[N \to +\infty]{} 0 \; .$$

Tangent plane estimators

Let Φ be a Lipschitz truncation of the inverse function, for $0 < \tau \leq 1$ and t > 0,

$$\Phi(t) = \frac{\chi_{\tau}(t)}{t} \quad \text{and} \quad \chi_{\tau}(t) = \begin{cases} 0 & \text{if } 0 < t < \frac{\tau}{2} \\ \frac{2}{\tau}t - 1 & \text{if } \frac{\tau}{2} \le t \le \tau \\ 1 & \text{if } t > \tau \end{cases}$$

We introduce

$$\nu_{\delta,N} := \frac{1}{N} \sum_{i=1}^{N} \Phi(\theta_{\delta,N}(X_i)) \delta_{X_i} = \left(\Phi \circ \theta_{\delta,N} \right) \mu_N \quad \text{and} \quad \nu_{\delta} = \left(\Phi \circ \theta_{\delta} \right) \mu_N$$

 β_B : localized version of β with test functions supported in B

Definition 7 (Covariance matrix associated with a measure). *Let* 0 < $d \leq n, r > 0$ and let λ be a Radon mesure in \mathbb{R}^n . We define for $x \in \mathbb{R}^n$, the $n \times n$ matrix

Question: how to recover θ and then $\mathcal{H}_{|S}^d$ from the knowledge of μ_N ?

A proper distance

Definition 2 (Bounded Lipschitz distance). For μ, ν two Radon measures in E (E can be \mathbb{R}^n or $\mathbb{R}^n \times \text{Sym}_+(n)$), the bounded *Lipschitz distance is defined by:*

 $\beta(\mu,\nu) = \sup\left\{ \left| \int_E f d(\mu-\nu) \right| : f \in C_c(E,\mathbb{R}), ||f||_{\infty} \le 1, Lip(f) \le 1, \right\}$

Lipschitz functions link the variation in the image spaces to the variation in E. It gives rougher convergence:

 $\beta(\delta_{\frac{1}{k+1}}, \delta_0) \le Lip(f) \xrightarrow{1}{k+1} \xrightarrow{k \to +\infty} 0$

comparatively to the total variation distance

$$d_{TV}(\delta_{\frac{1}{k+1}},\delta_0) = \sup\left\{ \left| \int_{\mathbb{R}} f d(\delta_{\frac{1}{k+1}} - \delta_0) \right| : f \in C_c(\mathbb{R},\mathbb{R}), ||f||_{\infty} \le 1 \right\} = 2.$$

Approximate tangent plane

Definition 6 (Approximate tangent plane). Let μ be a Radon measure and let $x \in \mathbb{R}^n$. We say that μ has approximate tangent space $P \in G_{d,n}$ with multiplicity $\theta \in \mathbb{R}_+$ at x, if $r^{-d}\mu_{x,r}$ weak-* converges to $\theta \mathcal{H}^d_{|P}$ in \mathbb{R}^n as $r \to 0_+$. That is:

 $\lim_{r \to 0_+} r^{-d} \int_{\mathbb{R}^n} \phi\left(\frac{y-x}{r}\right) d\mu(y) = \theta \int_P \phi(y) d\mathcal{H}^d(y) \qquad \forall \phi \in C_c(\mathbb{R}^n).$

Proposition 1. If $\mu = \theta \mathcal{H}_{|S}^d$ is d-rectifiable then μ admits an approximate tangent plan for \mathcal{H}^d almost every $x \in S$

$$\Sigma_r(x,\lambda) = \frac{1}{\sigma_{\phi}r^d} \int_{\mathbb{R}^n} \phi\left(\frac{|y-x|}{r}\right) \frac{y-x}{r} \otimes \frac{y-x}{r} \, d\lambda(y) \,,$$

where $z \otimes z$ is the rank one matrix of (i, j)-coefficient $z_i z_j$, for $z \in \mathbb{R}^n$ and $\sigma_{\phi} = \omega_d \int_{r=0}^{1} \phi(r) r^{d+1} dr$.

Proposition 2. Let $\mu = \theta \mathcal{H}_{|S}^d$ be a *d*-rectifiable measure, then for \mathcal{H}^d -a. e. $x \in S$,

$$\Sigma_r(x,\mu) \xrightarrow[r \to 0_+]{} \theta(x) \Pi_{T_xS}$$

where Π_{T_rS} is the matrix of orthogonal projection on the approximate tangent space T_xS .

Varifold estimators

Definition 8. Let $W_{r,\delta,N} := \nu_{\delta,N} \otimes \delta_{\Sigma_r(x,\nu_{\delta,N})}$ and $W_{r,\delta} := \nu_{\delta} \otimes \delta_{\sum_{r}(x,\nu_{\delta})}$, our Radon measures on $\mathbb{R}^{n} \times \operatorname{Sym}_{+}(n)$ that will converge to the varifold structure behind S.

Theorem 2. Assume that *S* is *d*-rectifiable, $0 < \theta_{\min} \le \theta \le \theta_{\max}$ and μ is d-Ahlfors regular with C_0 the regularity constant of μ . Then there exists a constant $M' = M'(d, C_0, \eta, \phi) > 0$ such that for all open ball $B \subset \mathbb{R}^n$ of radius $R_B < 1$, for all $r, \delta > 0$ and $N \in \mathbb{N}^*$ satisfying $N^{-\frac{1}{d}} < R_B$ and $N^{-\frac{1}{d}} < \min(\delta, r)$,

Fig. 3: Effect of the density on the tangent choice

References

- Eddie Aamari and Clément Levrard. Non-Asymptotic Rates for Manifold, Tangent Space, and Curvature Estimation. 2017. DOI: 10.48550/ARXIV.1705.00989. URL: https://arxiv.org/abs/1705.00989.
- .. Ambrosio, N. Fusco, and D. Pallara. *Functions of bounded variation and free discontinuity problems*. Oxford Mathematical Monographs, 2000. [2]
- Blanche Buet, Gian Paolo Leonardi, and Simon Masnou. "A Varifold Approach to Surface Approximation". In: Archive for Rational Mechanics and Analysis 226.2 (June 2017), pp. 639–694. ISSN: 1432-0673. DOI: 10.1007/s00205-017-1141-0. URL: [3] http://dx.doi.org/10.1007/s00205-017-1141-0.
- R. M. Dudley. "The Speed of Mean Glivenko-Cantelli Convergence". In: The Annals of Mathematical Statistics 40.1 (1969), pp. 40–50. DOI: 10.1214/aoms/1177697802. URL: https://doi.org/10.1214/aoms/1177697802. [4]