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Context

Manifold estimation has been deeply investigated in the Ck-
regularity model in [1]. However, data do not always lie on such
a regular shape, our goal is to study geometric estimators under
weaker hypothesis from the geometric measure theory standpoint
[2]. For this purpose we use the varifolds framework, a weak ver-
sion of manifold born in the 60’s that is well adapted to surface
approximation and that we now intend to analyse from a statisti-
cal perspective. Our approach take root in the seminal work [4].

Question

Given:
• a d- dimensional object S example: 2-sphere in R3

• a set of points {xi}i=1...N sampling S example: a scan ac-
quisition of S

Problem:How to attribute weights {mi}i=1...N so as to correct
sampling irregularities:we want that

∑N
i=1 miδxi is close to the

superficial measure Hd
|S.

Fig. 1: Non uniformly sampled sphere

Statistical framework

We model the non uniformity of the sampling by a density θ: we
assume that we have access to i.i.d samples X1, . . . , XN follow-
ing the same law µ = θHd

|S.

Definition 1 (Empirical measure). Let N ∈ N∗, X1, . . . , XN be N
random independent variables with the same law µ, the associ-
ated empirical measure µN is defined as:

µN = 1
N

N∑
i=1

δXi

Question: how to recover θ and then Hd
|S from the knowledge of

µN?

A proper distance

Definition 2 (Bounded Lipschitz distance). For µ, ν two Radon
measures in E (E can be Rn or Rn × Sym+(n)) , the bounded
Lipschitz distance is defined by:

β(µ, ν) = sup
{∣∣∣∣∫

E
fd(µ − ν)

∣∣∣∣ : f ∈ Cc(E,R), ||f ||∞ ≤ 1, Lip(f ) ≤ 1,

}
Lipschitz functions link the variation in the image spaces to the
variation in E. It gives rougher convergence:

β(δ 1
k+1

, δ0) ≤ Lip(f ) 1
k + 1

−−−−−→
k→+∞

0

comparatively to the total variation distance

dTV (δ 1
k+1

, δ0) = sup
{∣∣∣∣∫R fd(δ 1

k+1
− δ0)

∣∣∣∣ : f ∈ Cc(R,R), ||f ||∞ ≤ 1
}

= 2.

Ahlfors regular measure

Definition 3 (Ahlfors regular measure). Let µ be a Radon mea-
sure in Rn, for d > 0, we say that µ is a d-Ahlfors regular measure
if ∃C0 > 0 such that ∀x ∈ supp(µ) = S, ∀r ∈]0, diam(S)]:

1
C0

rd ≤ µ(B(x, r)) ≤ C0r
d.

Examples: sphere, square, Koch snowflake,four-corner Cantor,...

Rectifiability

Definition 4 (d-rectifiable set). A set S is d-rectifiable if there ex-
ists a countable family (fi)i∈N of Lipschitz maps from Rd to Rn

such that

Hd
(

S \
⋃
i∈N

fi(Rd)
)

= 0

Definition 5 (Rectifiable measures). Let µ be a Radon measure
in Rn.We say that µ is d-rectifiable if there exist a d-rectifiable set
S and a Borel function θ : S 7→ R+ such that µ = θHd

|S.

Now we want to analyse the local behaviour of our Radon mea-
sure µ around x ∈ Rn, we use the rescaled measures for r > 0:

µx,r(B) := µ(x + rB) for B ∈ Bor(Rn)

Fig. 2: Zoom the map to understand the local behaviour

Approximate tangent plane

Definition 6 (Approximate tangent plane). Let µ be a Radon
measure and let x ∈ Rn. We say that µ has approximate tan-
gent space P ∈ Gd,n with multiplicity θ ∈ R+ at x, if r−dµx,r

weak-∗ converges to θHd
|P in Rn as r → 0+. That is:

lim
r→0+

r−d
∫
Rn

ϕ

(
y − x

r

)
dµ(y) = θ

∫
P

ϕ(y)dHd(y) ∀ϕ ∈ Cc(Rn).

Proposition 1. If µ = θHd
|S is d-rectifiable then µ admits an ap-

proximate tangent plan for Hd almost every x ∈ S

Fig. 3: Effect of the density on the tangent choice

Density Estimators

The framework is the following:

• S ⊂ Rn d-dimensional set: Hd(S) < +∞

• µ = θHd
|S d-Ahlfors probability measure

• N ∈ N and µN the empirical measure

• choose η : R → R+ satisfying supp(η) ⊂ [−1, 1] and
||η||∞ + Lip(η) ≤ 1

For δ > 0 we introduce

∀x ∈ Rn, θδ,N (x) := 1
cηδd

∫
Rn

η

(
|x − y|

δ

)
dµN (y)

and

θδ(x) := 1
cηδd

∫
Rn

η

(
|x − y|

δ

)
dµ(y)

Theorem 1. Let (δN )N∈N∗ be a positive sequence tending to 0 and

such that δNN
1
d −−−−−→

N→+∞
+∞, then for Hd–a.e. x ∈ S,

E
[∣∣∣θδN ,N (x) − θ(x)

∣∣∣] ≤ C
N−1

d

δN
+ |θδN

(x) − θ(x)| −−−−−→
N→+∞

0 .

Tangent plane estimators

Let Φ be a Lipschitz truncation of the inverse function, for 0 < τ ≤ 1
and t > 0,

Φ(t) = χτ (t)
t

and χτ (t) =


0 if 0 < t < τ

22
τ t − 1 if τ

2 ≤ t ≤ τ
1 if t > τ

.

We introduce

νδ,N := 1
N

N∑
i=1

Φ(θδ,N (Xi))δXi
=
(
Φ ◦ θδ,N

)
µN and νδ = (Φ ◦ θδ) µ

βB: localized version of β with test functions supported in B

Definition 7 (Covariance matrix associated with a measure). Let 0 <
d ≤ n, r > 0 and let λ be a Radon mesure in Rn. We define for
x ∈ Rn, the n × n matrix

Σr(x, λ) = 1
σϕrd

∫
Rn

ϕ

(
|y − x|

r

)
y − x

r
⊗ y − x

r
dλ(y) ,

where z ⊗z is the rank one matrix of (i, j)–coefficient zizj, for z ∈ Rn

and σϕ = ωd
∫ 1

r=0 ϕ(r)rd+1 dr.

Proposition 2. Let µ = θHd
|S be a d–rectifiable measure, then for

Hd–a. e. x ∈ S,

Σr(x, µ) −−−−→
r→0+

θ(x)ΠTxS

where ΠTxS is the matrix of orthogonal projection on the approximate
tangent space TxS.

Varifold estimators

Definition 8. Let Wr,δ,N := νδ,N ⊗ δΣr(x,νδ,N ) and
Wr,δ := νδ ⊗ δΣr(x,νδ), our Radon measures on Rn × Sym+(n)
that will converge to the varifold structure behind S.

Theorem 2. Assume that S is d-rectifiable, 0 < θmin ≤ θ ≤ θmax and
µ is d-Ahlfors regular with C0 the regularity constant of µ. . Then
there exists a constant M ′ = M ′(d, C0, η, ϕ) > 0 such that for all
open ball B ⊂ Rn of radius RB < 1, for all r, δ > 0 and N ∈ N∗

satisfying N−1
d < RB and N−1

d < min(δ, r),

E
[
βB(Wr,δ,N , Wr,δ)

]
≤


M ′µ(B)

τ2 min(δ, r)
N−1

2 ln N if d = 2

M ′µ(B)
τ2 min(δ, r)

N−1
d if d > 2

.
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