
1/58

FISTA is an automatic geometrically optimized
algorithm for strongly convex functions

Jean-François Aujol 1

Joint work with Charles Dossal 2 and Aude Rondepierre 2

1 Institut de Mathématiques de Bordeaux, Université de Bordeaux
2 Institut de Mathématiques de Toulouse, INSA Toulouse

SMAI 2023

2/58

Composite optimization

Minimize F (x) = f (x) + h(x), x ∈ RN ,

where:

f is a convex differentiable function,

i.e: f (y) > f (x) + 〈∇f (x), y − x〉, with a L-Lipschitz gradient:

For all (x , y) ∈ RN × RN , we have:

f (y) 6 f (x) + 〈∇f (x), y − x〉︸ ︷︷ ︸
linear approximation

+
L

2
‖y − x‖2︸ ︷︷ ︸
=∆(x,y)

h is a convex lower semicontinuous (lsc) simple function.

↪→ Application to least square problems, LASSO (minx∈RN
1
2‖Ax − b‖2

2 + ‖x‖1)

↪→ Applications in Image and Signal processing, machine learning, deep
learning, Artificial Intelligence, . . .

3/58

The setting: local geometry of convex functions

In this talk we assume that the composite convex function F = f + h satisfies a
quadratic growth condition around its set of minimizers:

Quadratic growth condition G2
µ

There exists µ > 0 such that:

∀x ∈ RN , F (x)− F (x∗) >
µ

2
d(x ,X ∗)2

where X ∗ = arg minF and F ∗ := F (x∗) = minF .

Strong convexity property

∀x ∈ RN , y ∈ RN , F (y) > F (x) + 〈∇F (x), y − x〉+
µ

2
‖x − y‖2

The quadratic growth condition is a relaxation of the strong convexity property.

4/58

Strongly convex functions or quadratic growth functions

LASSO problem with A invertible

F (x) =
1

2
‖Ax − b‖2

2 + ‖x‖1

Then there exists µ > 0 such that F is µ strongly convex.

LASSO problem with A non injective

F (x) =
1

2
‖Ax − b‖2

2 + ‖x‖1

Then there exists µ > 0 such that F satisfies G2
µ, but F is not µ strongly convex.

[Bolte et al 2013]

5/58

The setting: local geometry of convex functions

In this talk we assume that the composite convex function F = f + h satisfies a
quadratic growth condition around its set of minimizers:

Quadratic growth condition G2
µ

There exists µ > 0 such that:

∀x ∈ RN , F (x)− F (x∗) >
µ

2
d(x ,X ∗)2

where X ∗ = arg minF and F ∗ = minF .

 Lojasiewicz property with an exponent 1
2

F (x)− F (x∗) 6
1

2µ
‖∇F (x)‖2

In the convex setting, both properties are equivalent.

6/58

The setting: large scale optimization

In this talk we assume that the composite convex function F = f + h satisfies a
quadratic growth condition around its set of minimizers:

Quadratic growth condition G2
µ

There exists µ > 0 such that:

∀x ∈ RN , F (x)− F (x∗) >
µ

2
d(x ,X ∗)2

Lipshitz gradient

f is convex with L Lipshitz gradient, i.e;: ‖∇f (x)−∇f (y)‖ 6 ‖x − y‖.

Conditionning

We denote by

κ :=
µ

L
.

We have 0 6 κ 6 1, and in large scale optimization problems, κ is usually very
small.

7/58

The setting: large scale optimization

In this talk we assume that the composite convex function F = f + h satisfies a µ
quadratic growth condition around its set of minimizers in RN .
f is convex with L Lipshitz gradient.
h is a convex lower semi-continuous function.

κ :=
µ

L
= o(1)

First order optimization

Since we deal with large scale optimization, we only consider first order
optimization methods, i.e. methods that can only use the values of the function
to minimize and/or the values of its gradient/subgradient.

Goal

We assume the existence of a minimizer of F on RN . We are interested in how
fast we can compute it. Speed in term of decrease of F (xn)− F ∗ with F ∗ the
minimum of F .

8/58

Analyzing optimization algorithms in terms of ε-solution
Notion of ε-solution

Let ε > 0. The minimizers of a composite function F = f + h are characterized
by:

0 ∈ ∂F (x) = ∇f (x) + ∂h(x),

or equivalently, for any γ > 0,

x = proxγh (x − γ∇f (x))

where: proxγh(x) = arg miny∈RN γh(y) + 1
2‖y − x‖2.

Definition (ε-solution)

An iterate xn is said to be an ε-solution of minx∈RN F (x) if:

‖g(xn)‖ 6 ε

where: g(x) := L(x − x+) := L
(
x − prox 1

L h
(x − 1

L∇f (x))
)

is the composite

gradient mapping.

9/58

Analyzing optimization algorithms in terms of ε-solution
A tractable stopping criterion

Two useful properties

1 ∀x ∈ RN , 1
2L‖g(x)‖2 6 F (x)− F ∗ [Nesterov 2007]

I

If F (xn)− F ∗ 6
1

2L
ε2,

then xn is an ε-solution of minx∈RN F (x).

2 ∀x ∈ RN , F (x+)− F ∗ 6 2
µ‖g(x)‖2 [Aujol-Dossal-Labarrière-Rondepierre 2021]

with x+ := prox 1
L h

(x − 1
L∇f (x))

A tractable stopping criterion

‖g(xn)‖ 6 ε

10/58

Outline

1 The Forward-Backward and FISTA algorithms
The Forward-Backward algorithm
FISTA a fast proximal gradient method
FB vs FISTA in the strongly convex case

2 FISTA is an automatic geometrically optimized algorithm
The dynamical system intuition
Convergence rates under some quadratic growth condition
Comparisons

3 Going further: Reducing oscillations
Restart
Hessian damping

11/58

Forward-Backward algorithm

Minimize F (x) = f (x) + h(x), x ∈ RN .

Optimality condition:
{0} ∈ ∇f (x) + ∂h(x)

or equivalently, for any γ > 0,

x = proxγh (x − γ∇f (x))

where: proxγh(x) = arg miny∈RN γh(y) + 1
2‖y − x‖2.

Forward-Backward algorithm

x0 ∈ RN

xn+1 = proxγh(xn − γ∇f (xn)), 0 < γ < 2
L .

If γ = 1
L , then xn+1 = x+

n , and g(xn) = L(xn − xn+1).
xn is an ε-solution if ‖g(xn)‖ ≤ ε.

12/58

Forward-Backward algorithm
Interpretation

Forward-Backward algorithm to minimize F = f + h with γ = 1
L

x0 ∈ RN

xn+1 = prox 1
L h

(xn − 1
L∇f (xn)) = x+

n .

Instead of minimizing directly F = f + h, minimize at each iteration n its
quadratic upper bound:

x 7→ f (xn) + 〈∇f (xn), x − xn〉+
L

2
‖x − xn‖2 + h(x)

Hence:

xn+1 = arg min
x∈RN

(
f (xn) + 〈∇f (xn), x − xk〉+

L

2
‖x − xn‖2 + h(x)

)
= arg min

x∈RN

(
h(x) +

L

2
‖x − (xn −

1

L
∇f (xn))‖2 + f (xn)− 1

2L
‖∇f (xn)‖2

)
= prox 1

L h

(
xn −

1

L
∇f (xn)

)

13/58

Forward-Backward algorithm
Basic examples

Gradient method (h = 0, unconstrained optimization):

xn+1 = xn −
1

L
∇f (xn)

since: proxh(x) = arg miny∈RN

(
0 + 1

2‖y − x‖2
)

= x .

Gradient projection method (h = iC , constrained convex optimization):

xn+1 = P⊥C (xn −
1

L
∇f (xn))

since: proxh(x) = arg miny∈RN

(
iC (y) + 1

2‖y − x‖2
)

= P⊥C (x).

Iterative Soft-Thresholding Algorithm (ISTA) (h = ‖ · ‖1):

xn+1 = prox 1
L h

(
xn −

1

L
∇f (xn)

)
with: proxγh(x) = sign(x) max(0, |x | − γ).

13/58

Forward-Backward algorithm
Basic examples

Gradient method (h = 0, unconstrained optimization):

xn+1 = xn −
1

L
∇f (xn)

since: proxh(x) = arg miny∈RN

(
0 + 1

2‖y − x‖2
)

= x .

Gradient projection method (h = iC , constrained convex optimization):

xn+1 = P⊥C (xn −
1

L
∇f (xn))

since: proxh(x) = arg miny∈RN

(
iC (y) + 1

2‖y − x‖2
)

= P⊥C (x).

Iterative Soft-Thresholding Algorithm (ISTA) (h = ‖ · ‖1):

xn+1 = prox 1
L h

(
xn −

1

L
∇f (xn)

)
with: proxγh(x) = sign(x) max(0, |x | − γ).

13/58

Forward-Backward algorithm
Basic examples

Gradient method (h = 0, unconstrained optimization):

xn+1 = xn −
1

L
∇f (xn)

since: proxh(x) = arg miny∈RN

(
0 + 1

2‖y − x‖2
)

= x .

Gradient projection method (h = iC , constrained convex optimization):

xn+1 = P⊥C (xn −
1

L
∇f (xn))

since: proxh(x) = arg miny∈RN

(
iC (y) + 1

2‖y − x‖2
)

= P⊥C (x).

Iterative Soft-Thresholding Algorithm (ISTA) (h = ‖ · ‖1):

xn+1 = prox 1
L h

(
xn −

1

L
∇f (xn)

)
with: proxγh(x) = sign(x) max(0, |x | − γ).

14/58

Forward-Backward algorithm
Convergence rate in the convex case

Assume that F is convex. Then:

∀n > 1, F (xn)− F ∗ 6
2L‖x0 − x∗‖2

n
.

Remember that if F (xn)− F ∗ 6 1
2Lε

2, then xn is an ε-solution of minx∈RN F (x).

The number of iterations required by FB to reach an ε-solution in the sense that:

2L‖x0 − x∗‖2

n
6

1

2L
ε2

is at most:
4L2

ε2
‖x0 − x∗‖2

(
= O

(
L2

ε2

))
.

15/58

FISTA an accelerated proximal gradient method

FISTA - Beck Teboulle 2009, Nesterov 1984

yn = xn +
tn − 1

tn+1
(xn − xn−1)

xn+1 = prox 1
L h

(
yn −

1

L
∇f (yn))

)
.

where t1 = 1 and the sequence (tn)n∈N is determined as the positive root of:

t2
n+1 − tn+1 = t2

n .

For the class of convex functions, they prove:

F (xn)− F ∗ 6
2L‖x0 − x∗‖2

(n + 1)2

[Nesterov 1984] The O
(

1
n2

)
rate is optimal for first order methods in the class of

convex functions.

16/58

FISTA a fast proximal gradient method

FISTA - Chambolle Dossal 2015, Su Boyd Candès 2016

Let α > 3.

yn = xn +
n

n + α
(xn − xn−1)

xn+1 = prox 1
L h

(
yn −

1

L
∇f (yn))

)
.

Initially Nesterov (1984) proposed a choice equivalent to α = 3.

Convergence of iterates for α > 3 [Chambolle-Dossal 2015].

For the class of composite convex functions:

∀n > 1, F (xn)− F ∗ 6
L(α− 1)2‖x0 − x∗‖2

2(n + α− 2)2

i.e. when α = 3: ∀n > 1, F (xn)− F ∗ 6 2L‖x0−x∗‖2

(n+1)2 .

The number of iterations required for FISTA to reach an ε-solution is in O
(

L2

ε

)
which is better than FB.

17/58

FB vs FISTA in the strongly convex case
Exponential rate vs Polynomial rate (1/3)

Assume now that F additionally satisfies some quadratic growth condition:

∀x ∈ RN , F (x)− F ∗ >
µ

2
d(x ,X ∗)2.

Convergence rate for FB [Garrigos, Rosasco, Villa 2017]

∀n ∈ N, F (xn)− F ∗ 6 (1− κ)n(F (x0)− F ∗).

The number of iterations required to reach an ε-solution is:

nFBε =
1

| log(1− κ)|
log

(
2L

ε2
(F (x0)− F ∗)

)
∼ 1

κ
log

(
2L

ε2
M0

)
.

Convergence rate for FISTA [Candès et al 2015], [Attouch Cabot 2017], [ADR 2018].

Assume additionally that F has a unique minimizer.

∀α > 0, ∀n ∈ N, F (xn)− F ∗ = O
(
n−

2α
3

)

18/58

FB vs FISTA in the strongly convex case
Exponential rate vs Polynomial rate (2/3)

Non-smooth convex optimization

(a) Input y: motion blur + noise (σ = 2)

50 100 150 200 250 300
10 -2

10 -1

10 0

10 1

10 2

ISTA
FISTA

(b) Convergence prof les

(c) Deconvolution ISTA(300)+UDWT (d) Deconvolution FISTA(300)+UDWT

19/58

FB vs FISTA in the strongly convex case
Exponential rate vs Polynomial rate (3/3)

log(‖g(xn)‖) along the iterations n

FB, FISTA-restart, FISTA with α = 3, FISTA with α = 12, FISTA with α = 30.

Motivation to provide a non-asymptotic analysis of FISTA and to compare rates
in finite time.

20/58

Nesterov accelerated algorithm for strongly convex functions

Nesterov accelerated algorithm for strongly convex functions (NSC)

yn = xn +
1−
√
κ

1 +
√
κ

(xn − xn−1)

xn+1 = prox 1
L h

(
yn − 1

L∇f (yn))
)
.

Theorem (Theorem 2.2.3, Nesterov 2013)

Assume that F is µ-strongly convex for some µ > 0. Let ε > 0. Then if κ = µ
L ,

∀n ∈ N, F (xn)− F (x∗) 6 2(1−
√
κ)n (F (x0)− F (x∗)) ,

which means that an ε-solution can be obtained in at most:

nNSCε =
1

|log(1−
√
κ)|

log

(
4LM0

ε2

)
∼ 1√

κ
log

(
4LM0

ε2

)
. (1)

The iterations require an estimation of κ = µ
L .

In large scale optimization problems, we usually have κ = o(
√
κ).

21/58

FISTA in the strongly convex case

log(‖g(xn)‖) along the iterations

FB, FISTA with α = 8, FISTA with α = 30,

NSC with the true value of µ, NSC with µ̃ = µ
10 .

21/58

FISTA in the strongly convex case

log(‖g(xn)‖) along the iterations

FB, FISTA with α = 8, FISTA with α = 30,

NSC with the true value of µ, NSC with µ̃ = µ
10 .

FISTA is efficient without knowing µ and its convergence rate does not suffer
from any underestimation of µ

22/58

Outline

1 The Forward-Backward and FISTA algorithms
The Forward-Backward algorithm
FISTA a fast proximal gradient method
FB vs FISTA in the strongly convex case

2 FISTA is an automatic geometrically optimized algorithm
The dynamical system intuition
Convergence rates under some quadratic growth condition
Comparisons

3 Going further: Reducing oscillations
Restart
Hessian damping

23/58

What we want to do now

FISTA: Nesterov accelerated algorithm for convex functions

• Initialization: x0 ∈ RN , x−1 = x0, ε > 0, α ≥ 3.

• Iterations (n ≥ 0): update xn and yn as follows:{
yn = xn + n

n+α (xn − xn−1)

xn+1 = prox 1
L h

(yn − 1
L∇f (yn))

until ‖g(xn)‖ ≤ ε i.e. until an ε-solution is reached.

Convergence rate analysis for a given ε > 0.

How to get bounds in finite time on F (xn)− F ∗ ?

Interpretation in terms of ε-solution:

I Since:

∀x ∈ RN ,
1

2L
‖g(x)‖2 6 F (x)− F ∗,

xn is an ε solution if F (xn)− F ∗ 6 1
2Lε

2.

24/58

The dynamical system intuition
Link with the ODEs - A guideline to study optimization algorithms

General methodology to analyze optimization algorithms

Interpreting the optimization algorithm as a discretization of a given ODE:

Gradient descent iteration:
xn+1 − xn

s
+∇F (xn) = 0

Associated ODE: ẋ(t) +∇F (x(t)) = 0.

Analysis of ODEs using a Lyapunov approach:

E(t) = F (x(t))− F ∗.

E(t) = t(F (x(t))− F ∗) +
1

2
‖x(t)− x∗‖2.

Building a sequence of discrete Lyapunov energies adapted to the
optimization scheme to get the same decay rates

25/58

Illustration for the gradient descent method
A Lyapunov analysis of the ODE ẋ(t) +∇F (x(t)) = 0

E(t) = F (x(t))− F ∗.

1 E is a Lyapunov energy (i.e. non increasing along the trajectories x(t)):

E ′(t) = 〈∇F (x(t)), ẋ(t)〉 = −‖∇F (x(t))‖2 6 0

hence:
∀t > t0, F (x(t))− F ∗ 6 F (x0)− F ∗

2 Assume now that F is additionally µ-strongly convex. Then:

∀y ∈ RN , ‖∇F (y)‖2 > 2µ(F (y)− F ∗),

hence:

E ′(t) = −‖∇F (x(t))‖2 6 −2µ(F (x(t))− F ∗) 6 −2µE(t)

and we deduce:

∀t > t0, F (x(t))− F ∗ 6 (F (x0)− F ∗)e−2µ(t−t0).

25/58

Illustration for the gradient descent method
A Lyapunov analysis of the ODE ẋ(t) +∇F (x(t)) = 0

E(t) = F (x(t))− F ∗.

1 E is a Lyapunov energy (i.e. non increasing along the trajectories x(t)):

E ′(t) = 〈∇F (x(t)), ẋ(t)〉 = −‖∇F (x(t))‖2 6 0

hence:
∀t > t0, F (x(t))− F ∗ 6 F (x0)− F ∗

2 Assume now that F is additionally µ-strongly convex. Then:

∀y ∈ RN , ‖∇F (y)‖2 > 2µ(F (y)− F ∗),

hence:

E ′(t) = −‖∇F (x(t))‖2 6 −2µ(F (x(t))− F ∗) 6 −2µE(t)

and we deduce:

∀t > t0, F (x(t))− F ∗ 6 (F (x0)− F ∗)e−2µ(t−t0).

26/58

Gradient descent for strongly convex functions

En = F (xn)− F ∗ with: xn+1 = xn − s∇F (xn).

En+1 − En = F (xn+1)− F (xn) 6 〈∇F (xn), xn+1 − xn〉+
L

2
‖xn+1 − xn‖2

6 −s
(

1− L

2
s

)
‖∇F (xn)‖2

If s < 2
L then the GD is a descent algorithm: ∀n, F (xn+1) ≤ F (xn).

Assume that F is additionally µ-strongly convex:

∀n, ‖∇F (xn)‖2 > 2µ(F (xn)− F ∗) = 2µEn,

hence: En+1 − En 6 −2µs

(
1− L

2
s

)
En.

For example if s = 1
L we get:

∀n, En+1 − En 6 −µ
L
En ⇒ En 6

(
1− µ

L

)n
E0

hence: F (xn)− F ∗ 6 (F (x0)− F ∗)
(
1− µ

L

)n
.

26/58

Gradient descent for strongly convex functions

En = F (xn)− F ∗ with: xn+1 = xn − s∇F (xn).

En+1 − En = F (xn+1)− F (xn) 6 〈∇F (xn), xn+1 − xn〉+
L

2
‖xn+1 − xn‖2

6 −s
(

1− L

2
s

)
‖∇F (xn)‖2

If s < 2
L then the GD is a descent algorithm: ∀n, F (xn+1) ≤ F (xn).

Assume that F is additionally µ-strongly convex:

∀n, ‖∇F (xn)‖2 > 2µ(F (xn)− F ∗) = 2µEn,

hence: En+1 − En 6 −2µs

(
1− L

2
s

)
En.

For example if s = 1
L we get:

∀n, En+1 − En 6 −µ
L
En ⇒ En 6

(
1− µ

L

)n
E0

hence: F (xn)− F ∗ 6 (F (x0)− F ∗)
(
1− µ

L

)n
.

27/58

The Nesterov’s accelerated gradient method
Link with the ODEs

Discretization of an ODE, Su Boyd and Candès (15)

The scheme defined by

xn+1 = yn − s∇F (yn) with yn = xn +
n

n + α
(xn − xn−1)

can be written

xn+1 − 2xn + xn−1 +
α

n
(xn+1 − xn) + h

n + α

n
∇F (yn) = 0.

This can be seen as a semi-implicit discretization of a solution of

ẍ(t) +
α

t
ẋ(t) +∇F (x(t)) = 0, (ODE)

with ẋ(t0) = 0. Move of a solid in a potential field with a vanishing viscosity α
t .

(Discretization step: δ =
√
s and xn ' x(n

√
s))

28/58

The Nesterov’s accelerated gradient method
Link with the ODEs

Discretization of an ODE, Su Boyd and Candès (15)

The scheme defined by

xn+1 = yn − s∇F (yn) with yn = xn +
n

n + α
(xn − xn−1)

can be seen as a semi-implicit discretization of a solution of

ẍ(t) +
α

t
ẋ(t) +∇F (x(t)) = 0, (ODE)

with ẋ(t0) = 0. Move of a solid in a potential field with a vanishing viscosity α
t .

Advantages of the continuous setting

1 A simpler Lyapunov analysis, better insight

2 Optimality of bounds

29/58

Convergence analysis of the Nesterov gradient method
Convergence rates in the continuous setting

Let F : RN → R be a differentiable convex function and x∗ ∈ arg min(F) 6= ∅.

If α > 3,

F (x(t))− F (x∗) = O
(

1

t2

)
[Attouch, Chbani,

Peypouquet, Redont 2016]

If α > 3, then x(t) cv to a minimizer of F and:

F (x(t))− F (x∗) = o

(
1

t2

) [Su, Boyd, Candes 2016]

[Chambolle, Dossal 2015]

[May 2017]

If α < 3 then no proof of cv of x(t) but:

F (x(t))− F (x∗) = O
(

1

t
2α
3

) [Attouch, Chbani, Riahi 2019]

[Aujol, Dossal 2017]

30/58

Nesterov, Proof of the convergence rate O
(

1
t2

)
under convexity

We define:

E(t) = t2(F (x(t))− F (x∗)) +
1

2
‖(α− 1)(x(t)− x∗) + tẋ(t)‖2

.

Using (ODE), a straightforward computation shows that:

E ′(t) = −(α− 1)t 〈∇F (x(t)), x(t)− x∗〉︸ ︷︷ ︸
>F (x(t))−F (x∗) by convexity

+2t(F (x(t))− F (x∗))

6 (3− α)t(F (x(t)− F (x∗)).

1 If α > 3, ∀t > t0, t2(F (x(t))− F (x∗)) 6 E(t0).

2 If α > 3,

∫ +∞

t=t0

(α− 3)t(F (x(t)− F (x∗))dt 6 E(t0).

If F is convex and if α > 3, the solution of (ODE) satisfies

F (x(t))− F (x∗) = O
(

1

t2

)

31/58

Nesterov’s accelerated gradient method
State of the art results

Let F : RN → R be a differentiable convex function with X ∗ := arg min(F) 6= ∅.

yn = xn +
n

n + α
(xn − xn−1)

xn+1 = yn − 1
L∇F (yn)

, α > 0

If α > 3

F (xn)− F (x∗) = O
(

1

n2

)
[Attouch, Peypouquet 2016]

If α > 3, then (xn)n>1 cv and:

F (xn)− F (x∗) = o

(
1

n2

)
[Chambolle, Dossal 2015]

[Attouch, Peypouquet 2015]

If α 6 3

F (xn)− F (x∗) = O
(

1

n
2α
3

)
.

[Attouch, Chbani, Riahi 2018]

[Apidopoulos, Aujol, Dossal 2018]

32/58

Convergence rate analysis in finite time
Sketch of proof

E(t) = t2(F (x(t))− F (x∗)) +
1

2
‖λ(x(t)− x∗) + tẋ(t)‖2

, λ =
2α

3
.

Assume that F satisfies a quadratic growth condition and admits a unique
minimizer.

1 Prove some differential inequation:

∀t > t0, E ′(t) +
λ− 2

t
E(t) 6 ϕ(t)E(t).

2 Integrate it between any t1 > t0 and t:

∀t > t1, E(t) 6 E(t1)
(t1

t

)λ−2

eφ(t1).

3 Choose t1 such that the previous inequality is as tight as possible:

∀t > t1, F (x(t))− F ∗ 6 C1e
2
3 C2(α−3)

(
α

t
√
µ

) 2α
3

.

33/58

Convergence rate analysis in finite time
Optimize α to get a fast exponential decay

Let ε be a given accuracy. Let us make some rough calculations:

For any α > 3, we have:(
α

t
√
µ

) 2α
3

6 ε2 ⇐⇒ t >
α
√
µ

(
1

ε

) 3
α

↪→ Polynomial decay.

Choose now:

α = C log

(
1

ε

)
.

Then (
α

t
√
µ

) 2α
3

6 ε2 ⇐⇒ t >
Ce

3
C

√
µ

log

(
1

ε

)

↪→ Fast exponential decay !

33/58

Convergence rate analysis in finite time
Optimize α to get a fast exponential decay

Let ε be a given accuracy. Let us make some rough calculations:

For any α > 3, we have:(
α

t
√
µ

) 2α
3

6 ε2 ⇐⇒ t >
α
√
µ

(
1

ε

) 3
α

↪→ Polynomial decay.

Choose now:

α = C log

(
1

ε

)
.

Then (
α

t
√
µ

) 2α
3

6 ε2 ⇐⇒ t >
Ce

3
C

√
µ

log

(
1

ε

)

↪→ Fast exponential decay !

34/58

Convergence rate analysis in finite time [ADR 2021]

FISTA for composite optimization with a quadratic growth condition

Theorem

Let ε > 0 and

αε := 3 log

(
3
√
LM0

e
√

2ε

)
where: M0 = F (x0)− F ∗.

Let (xn)n∈RN be a sequence of iterates generated by the FISTA algorithm with
parameter αε. Then for κ = µ

L small enough, an ε-solution is reached in at most:

nFISTAε :=
8e2

3
√
κ
αε =

8e2

√
κ

log

(
3
√
LM0

e
√

2ε

)
iterations.

αε does not depend on µ or any estimation of µ.

nFISTAε depends on the real value of µ.

Fast exponential decay (we have turned a polynomial decay O
(

1
n2α/3

)
into

an exponential one).

35/58

Comparison with Forward-Backward

Forward-Backward algorithm to minimize F = f + h

• Initialization: x0 ∈ RN , ε > 0.

• Iterations (n ≥ 0): update xn as follows:

xn+1 = prox 1
L h

(xn −
1

L
∇f (xn))

until ‖g(xn)‖ 6 ε.

Let ε > 0. For κ = µ
L small enough,

nFISTAε 6 nFBε

where:

nFBε =
1

| log(1− κ)|
log

(
2LM0

ε2

)
∼ 1

κ
log

(
2LM0

ε2

)
nFISTAε =

4e2

√
κ

log

(
9LM0

2e2ε2

)
with α = 3 log

(
3
√
LM0

e
√

2ε

)

36/58

Comparison with Nesterov for strongly convex functions

Nesterov accelerated algorithm for strongly convex functions

• Initialization: x0 ∈ RN , x−1 = x0.

• Iterations (n ≥ 0): update xn and yn as follows: yn = xn +
1−
√
κ

1 +
√
κ

(xn − xn−1)

xn+1 = prox 1
L h

(xn − 1
L∇f (xn))

until ‖g(xn)‖ ≤ ε.

Let ε > 0. If µ is known, for κ = µ
L small enough, NSC is faster than FISTA.

37/58

Comparison with Nesterov for strongly convex functions

But if µ is not perfectly known and for µ̃ 6 µ

nNSCε =
1∣∣∣∣log(1−
√

µ̃
L)

∣∣∣∣ log

(
4LM0

ε2

)
>

1

|log(1−
√
κ)|

log

(
4LM0

ε2

)

∼ 1√
κ

log

(
4LM0

ε2

)

In practice, FISTA may outperform NSC even for smaller underestimations
of µ.

38/58

Comparisons

log(‖g(xk)‖) along the iterations

FB, FISTA with α = 8, FISTA with α = 30,

NSC with the true value of µ, NSC with µ̃ = µ
10 .

39/58

To sum up

The version of FISTA proposed by Chambolle Dossal (2015) and Su Boyd
Candès (2016) can reach an ε-solution with at most

O

(√
L

µ
log

(
1

ε

))
iterations.

when the friction coefficient α is chosen as:

α = 3 log

(
3

e
√

2ε

√
L(F (x0)− F ∗)

)
.

No need to estimate the growth parameter µ and the convergence rate does
not suffer from an underestimation of µ.

J-F Aujol, Ch. Dossal, A. Rondepierre, FISTA is an automatic geometrically optimized

algorithm for strongly convex functions, Mathematical Programming 2023.

40/58

To sum up

Geometry References Convergence rate Number of iterations
of F for F (xn)− F∗ to reach an ε solution

FB Convex N84, BT09
2L‖x0 − x∗‖2

n

4L2

ε2
‖x0 − x∗‖2

FISTA with α = 3 Convex N84, BT09
2L‖x0 − x∗‖2

(n + 1)2

2L

ε
‖x0 − x∗‖

FB Convex and G2
µ Garrigos 17 (1 + κ)−n(F (x0)− F∗) O

(
1

κ
log

(
1

ε

))
NSC Strongly convex Nesterov 13 2(1−

√
κ)n(F (x0)− F∗) O

(
1
√
κ

log

(
1

ε

))
Requires estimate of µ

FISTA Convex and G2
µ Attouch 18 O

(
n
− 2α

3

)
Unknown

α > 3 Uniqueness of minimizer ADR19

FISTA Convex and G2
µ ADR21 O

(
e−Cn

√
κ
)

O
(

1
√
κ

log

(
1

ε

))
α = 3 log

(
5
√

LM0
e ε

)
Uniqueness of minimizer

41/58

Outline

1 The Forward-Backward and FISTA algorithms
The Forward-Backward algorithm
FISTA a fast proximal gradient method
FB vs FISTA in the strongly convex case

2 FISTA is an automatic geometrically optimized algorithm
The dynamical system intuition
Convergence rates under some quadratic growth condition
Comparisons

3 Going further: Reducing oscillations
Restart
Hessian damping

42/58

Restart strategies

This last part is related to works within the PhD of Hippolyte Labarrière.

About inertia

Recall the definition of FISTA (for α = 3)) to minimize F = f + h:

∀k > 0,

xk = prox 1

L
h

(
yk−1 −

1

L
∇f (yk−1)

)
yk = xk +

k − 1

k + 2
(xk − xk−1)

or if h = 0 and thus f = F ,

∀k > 0,

xk = yk−1 −

1

L
∇F (yk−1)

yk = xk +
k − 1

k + 2
(xk − xk−1)

→ taking in account the previous iterates generates inertia.

43/58

Restart strategies

Restarting FISTA, why?

to take advantage of inertia,

to avoid oscillations.

Figure: Trajectory of the iterates of FISTA (left) and FISTA restart (right) for a
least-squares problem (N = 20).

44/58

Restart strategies

Restarting FISTA, how?

Algorithm 1 : FISTA restart

Require: x0 ∈ RN , y0 = x0, k = 0, i = 0.
repeat
k = k + 1, i = i + 1
xk = prox 1

L
h

(
yk−1 − 1

L∇f (yk−1)
)

if Restart condition is True then
i = 1

end if
yk = xk + i−1

i+2 (xk − xk−1)
until Exit condition is True

→ Cutting inertia is equivalent to restarting the algorithm from the last
iterate.

45/58

Restart strategies

Minimize a composite convex function F = f + h that satisfies a µ
quadratic growth condition around its set of minimizers in RN .
f is convex with L Lipshitz gradient.
h is a convex lower semi-continuous function.

κ :=
µ

L
= o(1)

Objective: get a restart condition that

does not require to know the growth parameter µ,

ensures a fast convergence of the method:

F (xk)− F ∗ = O(e−K
√

µ
L
k),

is not computationnaly expensive,

is easy to implement.

46/58

Restart strategies

Empiric FISTA restart (O’Donoghue and Candès, 2015, Beck and
Teboulle, 2009)

Restart under some exit condition

on F :
F (xk) > F (xk−1),

on ∇F :
〈∇F (xk), xk − xk−1〉 > 0.

47/58

Restart strategies

Fixed FISTA restart (Necoara et al., 2017)

Restart every k∗ iterations where k∗ is defined according to the growth

parameter µ. If k∗ =
⌊

2e
√

L
µ

⌋
:

F (xk)− F ∗ = O
(
e−

1
e

√
µ
L
k
)
.

Adaptive FISTA restart (Alamo et al., 2019, Fercoq and Qu, 2019)

Restart according to the geometry of F and previous iterations.

Adaptive restart by Alamo et al.: F (xk)− F ∗ = O
(
e−

1
16

√
µ
L
k
)
.

Adaptive restart by Fercoq and Qu:

F (xk)− F ∗ =O

e

−
√

2−1

2
√
e(2−
√ µ

µ0
)

√
µ
L
k
.

47/58

Restart strategies

Fixed FISTA restart (Necoara et al., 2017)

Restart every k∗ iterations where k∗ is defined according to the growth

parameter µ. If k∗ =
⌊

2e
√

L
µ

⌋
:

F (xk)− F ∗ = O
(
e−

1
e

√
µ
L
k
)
.

Adaptive FISTA restart (Alamo et al., 2019, Fercoq and Qu, 2019)

Restart according to the geometry of F and previous iterations.

Adaptive restart by Alamo et al.: F (xk)− F ∗ = O
(
e−

1
16

√
µ
L
k
)
.

Adaptive restart by Fercoq and Qu:

F (xk)− F ∗ =O

e

−
√

2−1

2
√
e(2−
√ µ

µ0
)

√
µ
L
k
.

48/58

Restart strategies

Strategy of our scheme:

to estimate the growth parameter µ at each restart,

to adapt the number of iterations of the following restart according to
this estimation.

to stop the algorithm when the exit condition ‖∇g(rj)‖ 6 ε is
satisfied.

49/58

Restart strategies

Algorithm 2 : Automatic FISTA restart

Require: r0 ∈ RN , j = 1
n0 = b2Cc
r1 = FISTA(r0, n0)
n1 = b2Cc
repeat
j = j + 1
rj = FISTA(rj−1, nj−1)

µ̃j = min
i∈N∗
i<j

4L

(ni−1 + 1)2

F (ri−1)− F (rj)

F (ri)− F (rj)
Estimate of the parameter µ.

if nj−1 6 C
√

L
µ̃j

then

nj = 2nj−1 Update of the number of iterations per restart.

end if
until ‖g(rj)‖ 6 ε

50/58

Why it works

Lemma

If (xk) is generated with FISTA, we have

F (xk)− F ∗ 6
4L

µ(k + 1)2
(F (x0)− F ∗) .

Hence

∀j ∈ N∗, µ 6
4L

(nj−1 + 1)2

F (rj−1)− F ∗

F (rj)− F ∗
.

But in fact, we can even show:

∀j ∈ N∗, µ 6
4L

(nj−1 + 1)2

F (rj−1)− F (rj+1)

F (rj)− F (rj+1)
.

Hence the definition of µ̃ in Algorithm 1.

Lemma

The sequence (nj)j∈N provided by Algorithm 2 satisfies nj 6 2C
√

L
µ .

51/58

Restart strategies

Theorem (Aujol, Dossal, Labarrière, Rondepierre, 2021)

If F satisfies the assumptions stated before and C > 4, then

F (r+
j)− F ∗ = O

e

−
log

(
C2

4 −1

)
4C

√
µ
L

j∑
i=0

ni

 .

Let C = 6.38, then

F (r+
j)− F ∗ = O

e

− 1
12

√
µ
L

j∑
i=0

ni

 .

52/58

Restart strategies

Image inpainting:

min
x

F (x) :=
1

2
‖Mx − y‖2 + λ‖Tx‖1,

where M is a mask operator and T is an orthogonal transformation
ensuring that Tx0 is sparse.

53/58

Restart strategies

Image inpainting:

54/58

Attenuating oscillations introducing Hessian-driven damping

Hessian-driven damping

(DIN-AVD) system (Attouch, Peypouquet and Redont, 2016)

ẍ(t) +
α

t
ẋ(t) + βHF (x(t))ẋ(t) +∇F (x(t)) = 0.

Attenuation of the oscillations through the introduction of a
geometry-driven damping term.

55/58

Attenuating oscillations introducing Hessian-driven damping

Integrability properties

Attouch, Peypouquet and Redont, 2016: if F is convex and C 2,
α > 3 and β > 0: ∫ +∞

t0

t2‖∇F (x(t))‖2dt < +∞,

Aujol, Dossal, Hoàng, Labarrière and Rondepierre, 2022: if F is
convex and C 2, satisfies G2

µ and has a unique minimizer. Then, for
α > 3 and β > 0:∫ +∞

t0

tα−ε‖∇F (x(t))‖2dt < +∞, ∀ε ∈ (0, 1).

56/58

Attenuating oscillations introducing Hessian-driven damping

Derivating a numerical scheme: IGAHD (Attouch, Chbani, Fadili
and Riahi, 2020)

ẍ(t) +
α

t
ẋ(t) + βHF (x(t))ẋ(t) +

(
1 +

β

t

)
∇F (x(t)) = 0.

↓
xk = yk−1 − s∇F (yk−1),

yk = xk +
k − 1

k + α− 1
(xk − xk−1)− β

√
s(∇F (xk)−∇F (xk−1))− β

√
s

k
∇F (xk−1),

57/58

Attenuating oscillations introducing Hessian-driven damping

Summary

The Hessian-driven damping term is a physical way to attenuate
oscillations. As this is a relatively recent subject of research, there are
some limitations:

the behavior of the numerical schemes derivated from (DIN-AVD) is
not fully understood (current convergence rates hold if β is small),

the dependency in β is not known,

there is no proof showing that it is faster than classical inertial
schemes.

58/58

Conclusion/To sum up

Geometry References Convergence rate Number of iterations
of F for F (xn)− F∗ to reach an ε solution

FB Convex N84, BT09
2L‖x0 − x∗‖2

n

4L2

ε2
‖x0 − x∗‖2

FISTA with α = 3 Convex N84, BT09
2L‖x0 − x∗‖2

(n + 1)2

2L

ε
‖x0 − x∗‖

FB Convex and G2
µ Garrigos 17 (1 + κ)−n(F (x0)− F∗) O

(
1

κ
log

(
1

ε

))
NSC Strongly convex Nesterov 13 2(1−

√
κ)n(F (x0)− F∗) O

(
1
√
κ

log

(
1

ε

))
Requires estimatate of µ

FISTA Convex and G2
µ Attouch 18 O

(
n
− 2α

3

)
Unknown

α > 3 Uniqueness of minimizer ADR19

FISTA Convex and G2
µ ADR21 O

(
e−Cn

√
κ
)

O
(

1
√
κ

log

(
1

ε

))
α = 3 log

(
5
√

LM0
e ε

)
Uniqueness of minimizer

Optimal FISTA restart Strongly convex Necoara 19 O
(
e
− 1

e
√
κn
)

O
(

1
√
κ

log

(
1

ε

))
Requires estimate of µ

FISTA restart Convex and G2
µ Aujol etal21 O

(
e
− 1

12
√
κn
)

O
(

1
√
κ

log

(
1

ε

))

Next step =⇒ remove the convexity assumption on F (new Lyapounov functions, . . .).

	The Forward-Backward and FISTA algorithms
	The Forward-Backward algorithm
	FISTA a fast proximal gradient method
	FB vs FISTA in the strongly convex case

	FISTA is an automatic geometrically optimized algorithm
	The dynamical system intuition
	Convergence rates under some quadratic growth condition
	Comparisons

	Going further: Reducing oscillations
	Restart
	Hessian damping

