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Présentation du problème: systèmes de Diffusion (D)

∂[Xi ]
∂t = µi ([Xi ]R − 2[Xi ] + [Xi ]L)

⇓
∂[Xi ]
∂t = ∆[Xi ]

⇓
∂[Xi ]
∂t = ∆pi (x)[Xi ] = div

(
|∇[Xi ]|pi (x)−2∇[Xi ]

)
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Présentation du problème: systèmes de Réaction-Diffusion (RD)

Solution de type GEL: αiX1 + βiX2 → produitsi

∂[Xi ]
∂t = ∆pi (x)[Xi ] + ci [X1]

α1 [X2]
βi

Dany Nabab, Ouarda Saifia and Jean Vélin Department of Mathematics and Informatic (D.M.I.), University of Antilles, LAMIA

Multiplicity Result for a Class of Nonlinear Elliptic System in Variable Exponent Sobolev Spaces



Introduction Mean Value Theory Existence of one solution Multiplicity theory Existence of two solutions

Présentation du problème: systèmes de Réaction-Diffusion-Convection (RDC)

Solution PAS de type GEL:

∂[Xi ]

∂t
= ∆pi (x)[Xi ] + ki [X1]

αi [X2]
βi + di ,1 |∇[X1]|γi + di ,2 |∇[X2]|γ i
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Présentation du problème

Systèmes de Réaction-Diffusion-Convection:

(S)


−∆pi (x)ui = fi (x , u1, .., un,∇u1, ..,∇un) dans Ω

ui = 0 sur ∂Ω
1 ≤ i ≤ n

n=1: scalaire

n=2: vectoriel

Termes sources:

|fi (x , s1, .., sn, ξ1, .., ξn)| ≤ ci (x)s
αi (x)
1 s

βi (x)
2 + di (x) |ξ1|γi (x) + ei (x) |ξ2|γ i (x) ,

(x , si , ξi ) ∈ Ω× R× RN
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Espace fonctionnel de recherche

Espaces d’Orlicz-Sobolev:

n∏
i=1

W
1,pi (x)
0 (Ω)

[1] X. Fan, D. Zhao, On the spaces Lp(x)(Ω) and W
p(x)
m (Ω), Journal of mathematical

analysis and applications, 263.2 (2001), 424-446.

Dany Nabab, Ouarda Saifia and Jean Vélin Department of Mathematics and Informatic (D.M.I.), University of Antilles, LAMIA

Multiplicity Result for a Class of Nonlinear Elliptic System in Variable Exponent Sobolev Spaces



Introduction Mean Value Theory Existence of one solution Multiplicity theory Existence of two solutions

1 Introduction

2 Mean Value Theory

3 Existence of one solution

4 Multiplicity theory

5 Existence of two solutions

Dany Nabab, Ouarda Saifia and Jean Vélin Department of Mathematics and Informatic (D.M.I.), University of Antilles, LAMIA

Multiplicity Result for a Class of Nonlinear Elliptic System in Variable Exponent Sobolev Spaces



Introduction Mean Value Theory Existence of one solution Multiplicity theory Existence of two solutions

Banks’ Mean Value Theorem

Theorem
Let f and ϕ be real valued functions defined for x ∈ Ω with f integrable over Ω and

−∞ < m ≤ ϕ(x) ≤ M <∞.

Let Ω(y) = {x ∈ Ω |ϕ(x) ≥ y}. If

0 ≤
∫
Ω(y)

f (x)dx ≤
∫
Ω
f (x)dx

for all y ∈ [m,M], then there exists a number γ ∈ [m,M] such that

γ

∫
Ω
f (x)dx =

∫
Ω
f (x)ϕ(x)dx .
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Proof of Banks’ Theorem I

Step 1: Banks proves the following equalities

•
∫
Ω
f (x)ϕ(x)dx = m

∫
Ω
f (x)dx +

∫ M

m

(∫
Ω(y)

f (x)dx

)
dy

•
∫
Ω
f (x)ϕ(x)dx = M

∫
Ω
f (x)dx −

∫ M

m

(∫
Ω(y)C

f (x)dx

)
dy

with

Ω(y) = {x ∈ Ω |ϕ(x) ≥ y} .

Step 2: He assumes that
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Proof of Banks’ Theorem II

•
∫ M

m

(∫
Ω(y)

f (x)dx

)
dy ≥ 0

•
∫ M

m

(∫
Ω(y)C

f (x)dx

)
dy = (M −m)

∫
Ω
f (x)dx −

∫ M

m

(∫
Ω(y)

f (x)dx

)
dy ≥ 0

Step 3: He deduces that

m

∫
Ω
f (x)dx ≤

∫
Ω
f (x)ϕ(x)dx ≤ M

∫
Ω
f (x)dx

[1] D. Banks, An integral inequality, Proceedings of the American Mathematical
Society 5 (14) (1963), 823-828.
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Adaptated Mean Value Theorem

Theorem

Let u ∈ W
1,p(x)
0 (Ω) be the solution of a nonlinear elliptic equation of the form

−∆p(x)u = h(x) in Ω, u = 0 on ∂Ω, (1)

where h is a sign-constant function. Let f : Ω → R be a Lipschitz continuous function
satisfying −∞ < m ≤ ϕ(x) ≤ M <∞ for some constants m,M. Then, for any
sign-constant function ϕ ∈ W

1,p(x)
0 (Ω), there exists a real γ ∈ [m,M], depending on φ,

such that ∫
Ω
ϕ(x)|∇u|p(x)−2∇u∇φdx = γ

∫
Ω
h(x)ϕdx . (2)
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Proof of the Adaptated Mean Value Theorem I

Step 1: We prove the following equalities

•
∫
Ω

a(ϵ,Ω)(x)ϕ(x) |∇u|p(x)−2∇u∇φϵdx = m

∫
Ω

a(ϵ,Ω)(x) |∇u|p(x)−2∇u∇φϵdx

+

∫ M

m

(∫
Ω

a(ϵ,Ω(y))(x) |∇u|p(x)−2∇u∇φϵdx

)
dy

•
∫
Ω

a(ϵ,Ω)(x)ϕ(x) |∇u|p(x)−2∇u∇φϵdx = M

∫
Ω

a(ϵ,Ω)(x) |∇u|p(x)−2∇u∇φϵdx

−
∫ M

m

(∫
Ω

a(ϵ,Ω(y)C )(x) |∇u|p(x)−2∇u∇φϵdx

)
dy

with

a(ϵ,Ω(y))(x) = 1Ω(y)∩Ωϵ
⋆Ψϵ
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Proof of the Adaptated Mean Value Theorem II

Step 2: We prove that

•
∫ M

m

(∫
Ω

a(ϵ,Ω(y))(x) |∇u|p(x)−2∇u∇φϵdx

)
dy ≥ 0

•
∫ M

m

(∫
Ω

a(ϵ,Ω(y)C )(x) |∇u|p(x)−2∇u∇φϵdx

)
dy ≥ 0

To do so, we prove the existence of v(ϕϵ,y) such that

∇v(ϕϵ,y) = a(ϵ,A(y))∇φϵ a.e. in Ω. (3)
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Proof of the Adaptated Mean Value Theorem III

which implies that∫ M

m

(∫
Ω

a(ϵ,A(y))(x) |∇u|p(x)−2∇u∇φϵdx

)
dy =

∫ M

m

(∫
Ω

|∇u|p(x)−2∇u∇v(ϕϵ,y)dx

)
dy

=

∫ M

m

(∫
Ω

h(x)v(ϕϵ,y)(x)dx

)
dy ≥ 0.

Step 3: We deduce that

m

∫
Ω

a(ϵ,Ω)(x) |∇u|p(x)−2∇u∇φϵdx ≤
∫
Ω

a(ϵ,Ω)(x)ϕ(x) |∇u|p(x)−2∇u∇φϵdx

≤ M

∫
Ω

a(ϵ,Ω)(x) |∇u|p(x)−2∇u∇φϵdx
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Proof of the Adaptated Mean Value Theorem IV

that is, doing ϵ→ 0,

m

∫
Ω

h(x)φdx = m

∫
Ω

|∇u|p(x)−2∇u∇φdx ≤
∫
Ω

ϕ(x) |∇u|p(x)−2∇u∇φdx

≤ M

∫
Ω

|∇u|p(x)−2∇u∇φdx = M

∫
Ω

h(x)φdx

[1] K. Perera & E.A. Silva, Existence and multiplicity of positive solutions for singular
quasilinear problems, Journal of mathematical analysis and applications 323 (2006),
1238–1252.

[2] D.D. Hai, Singular boundary value problems for the p-Laplacian, Nonlinear Analysis:
Theory, Methods & Applications 73 (2010), 2876–2881.
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Application 1

Lemma

Let h ∈ L∞(Ω) be a function such that ∥h∥∞ ≤ 1, and let u ∈ W
1,p(x)
0 (Ω) be the weak

solution of the Dirichlet problem

−∆p(x)u = h(x) in Ω, u = 0 on ∂Ω. (4)

Then, there exists a constant k̄p > 0 and τ ∈ (0, 1), depending only on p, N, and Ω,
such that

∥u∥1,τ ≤ k̄p∥h∥
1

p±−1
∞ (5)

with

p± :=

{
p− if ∥h∥∞ > 1
p+ if ∥h∥∞ ≤ 1.
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Proof of Application 1 I

By the MVT, there exists x0 ∈ Ω such that, for φ ∈
(
W

1,p(.)
0 (Ω)

)
+
,

∫
Ω

|∇(∥h∥
−1

p±−1
∞ u)|p(x)−2∇(∥h∥

−1
p±−1
∞ u)∇φ dx

=

∫
Ω

∥h∥
−(p(x)−1)

p±−1
∞ |∇u|p(x)−2∇u∇φ dx

= ∥h∥
−(p(x0)−1)

p±−1
∞

∫
Ω

|∇u|p(x)−2∇u∇φ dx = ∥h∥
−(p(x0)−1)

p±−1
∞

∫
Ω

h(x)φ dx

≤ ∥h∥
−(p±−1)
p±−1

∞

∫
Ω

h(x)φ dx =

∫
Ω

∥h∥−1
∞ h(x)φ dx ≤

∫
Ω

φ dx .

Thus,

−∆p(x)(∥h∥
−1

p±−1
∞ u) ≤ 1.
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Proof of Application 1 II

By Fan’s regularity theorem, there exists τ ∈ (0, 1) and k̄p > 0 such that

∥h∥
−1

p±−1
∞ ∥u∥C1,τ (Ω) ≤ k̄p.

[1] X. Fan, Global C1,α regularity for variable exponent elliptic equations in divergence form,
Journal of Inequalities and Applications 235 (2) (2007), 397-417.
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Application 2

Let ζi ∈ C 1,τ (Ω), τ ∈ (0, 1), be the solutions of the Dirichlet problems

−∆pi (x)ζi = mid(x)
αi (x)+βi (x) in Ω, ζi (x) = 0 on ∂Ω. (6)

Proposition

Assume that 0 ≤ min{α−
i , β

−
i } ≤ α+

i + β+i ≤ p−i − 1. Then it holds

−∆pi (x)ui ≤ mi u
αi (x)
1 u

βi (x)
2 in Ω, (7)

where ui = ciζi , provided that ci > 0 is sufficiently small.

Dany Nabab, Ouarda Saifia and Jean Vélin Department of Mathematics and Informatic (D.M.I.), University of Antilles, LAMIA

Multiplicity Result for a Class of Nonlinear Elliptic System in Variable Exponent Sobolev Spaces



Introduction Mean Value Theory Existence of one solution Multiplicity theory Existence of two solutions

Proof of Application 2 I
From the assumption 0 ≤ min{α−

i , β
−
i } ≤ α+

i + β+
i ≤ p−i − 1, we may find ci > 0 small

enough so that

(cik0)
α+

i +β+
i ≥ c

p−
i −1

i .

Let φi ∈ W
1,pi (x)
0 (Ω) with φi ≥ 0. It holds

mi

∫
Ω

u
αi (x)
1 u

βi (x)
2 φi dx = mic

α+
i +β+

i

i

∫
Ω

ζ
αi (x)
1 ζ

βi (x)
2 φi dx

≥ (cik0)
α+

i +β+
i mi

∫
Ω

d(x)αi (x)+βi (x)φi dx

= (cik0)
α+

i +β+
i

∫
Ω

|∇ζi |pi (x)−2∇ζi∇φi dx

≥ c
p−
i −1

i

∫
Ω

|∇ζi |pi (x)−2∇ζi∇φi dx .

(8)
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Proof of Application 2 II

Besides, Theorem 2 ensures the existence of xi ∈ Ω such that,∫
Ω

|∇ui |pi (x)−2∇ui∇φi dx =

∫
Ω

|∇(ciζi )|pi (x)−2∇(ciζi )∇φi dx

= c
pi (xi )−1
i

∫
Ω

|∇ζi |pi (x)−2∇ζi∇φi dx ≤ c
p−
i −1

i

∫
Ω

|∇ζi |pi (x)−2∇ζi∇φi dx

Thus, we infer that ∫
Ω

|∇ui |pi (x)−2∇ui∇φi dx ≤ mi

∫
Ω

u
αi (x)
1 u

βi (x)
2 φi dx ,
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Main hypotheses

(H1) Ω ⊂ RN (N ≥ 2) is a bounded domain with smooth boundary ∂Ω.

(H2) pi ∈ C 1(Ω), 1 < p−i ≤ p+i <∞ (i = 1, 2).

(H3) fi (x , u1, u2,∇u1,∇u2) (i = 1, 2) is of Carathéodory type.

(H4) There exists constants mi ,Mi > 0 with functions αi , βi , γi , γ i ∈ C (Ω), s.t.
mi s

αi (x)
1 s

βi (x)
2 ≤ fi (x , s1, s2, ξ1, ξ2) ≤ Mi

(
s
αi (x)
1 s

βi (x)
2 + |ξ1|γi (x) + |ξ2|γ i (x)

)
(i = 1, 2), for a.e. x ∈ Ω and for all s1, s2 > 0.

(H5) 0 ≤ min{α−
i , β

−
i } ≤ α+

i + β+
i ≤ p−i − 1

and 0 ≤ min{γ−i , γ̄
−
i } ≤ max{γ+i , γ

+
i } ≤ p−i − 1.
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Exisence theorem

Theorem

Under assumptions (H), system (S) has at least one positive nontrivial solution in
C 1,ν

0 (Ω)× C 1,ν
0 (Ω) for certain ν ∈ (0, 1).

For each (z1, z2) ∈ C 1
0 (Ω)× C 1

0 (Ω), we consider the auxiliary problem

(S(z1,z2))

{
−∆pi (x)ui = fi (x , z1, z2,∇z1,∇z2) in Ω
ui = 0 on ∂Ω, i = 1, 2.

Now, we introduce the closed, bounded and convex set

KC =
{
(y1, y2) ∈ C 1

0 (Ω)
2 : ui ≤ yi in Ω and ∥∇yi∥∞ ≤ C

}
, (9)

where C > 0 is a constant sufficiently large.
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Proof of the existence theorem I

Define the map
T : KC → C 1

0 (Ω)× C 1
0 (Ω)

(z1, z2) 7→ T (z1, z2) = (u1, u2)(z1,z2),

where (u1, u2) is required to satisfy (S(z1,z2)). We prove that :

• T is well defined (Browder-Minty’s theorem)
• T is compact (Fan’s regularity theorem)
• T is continuous (Ascoli-Arzela’s theorem)
• T (KC ) ⊂ KC (Weak comparison principle)
• T has at least one fixed point (Schauder’s fixed point theorem)
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Multiplicity theorem

Theorem

Let Y be a nonempty closed convex subset of E and U be an open subset of Y . Assume that
the application F is compact and differentiable over the set U, with F(0) = F ′(0) = 0, where
0 refers to the trivial function of E , and for any t ∈ [0, 1], 0 /∈ (I − tF)(∂U). Also, suppose the
set

Γ = {x ∈ U\{0} | x = F(x) and 1 is not an eigenvalue of F ′(x)} (10)

is not empty. Then

1 Γ is finite;

2 For any x ∈ Γ, x is isolated;

3 If card(Γ) is odd, problem x = F(x) possesses at least card(Γ) + 1 nontrivial solutions in
U.
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Proof of the multiplicity theorem I

We prove the following points :

• For each x ∈ Γ, x is isolated (Amann’s theorem) (11)
• Γ is finite (since F(Γ) = Γ and F is compact) (12)
• Ht = (1 − t)I + t(I −F) = I − tF , t ∈ [0, 1]. (13)
• i(F ,U,Y ) = i(Ht ,U,Y ) = i(I ,U,Y ) = 1. (Amann’s index fixed point) (14)
• i(F ,U,Y ) = i(F ,U1,Y ) + i(F ,U2,Y ), (15)

• i(F ,U,Y ) =
∑

x∈Γ∪{0}

i(F ,B(x , ρ),Y ) (16)

+ i(F ,U\
{
∪x∈Γ∪{0}B(x , ρ)

}
,Y ). (17)

• i(F ,B(0, ρ),Y ) = d(I −F ,B(0, ρ), 0) = d(I −F ′(0),B(0, ρ), 0) (18)
= d(I ,B(0, ρ), 0) = 1. (19)
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Proof of the multiplicity theorem II

•
∑
x∈Γ

i(F ,B(x , ρ),Y ) + i(F ,U\
{
∪x∈Γ∪{0}B(x , ρ)

}
,Y ) = 0. (20)

• i(F ,B(x , ρ),Y ) = (−1)m (Amann’s theorem) (21)

[1] H. Amann,Lectures on some fixed point theorem, Conselho nacional de pesquisas,
Instituto de Matemática Pura e Aplicada, 1975.

[2] H. Amann, Fixed point equations and nonlinear eigenvalue problems in ordered Banach
spaces, SIAM review, 18(4), 620-709, 1976.
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Application I

Consider the nonlinear Dirichlet system
−∆p(x)u = f1(x , u, v ,∇u,∇v) in Ω

−∆q(x)v = f2(x , u, v ,∇u,∇v) in Ω

u = v = 0 on ∂Ω
⇔

{
L(u, v) = S(u, v) in Ω

(u, v) = (0, 0) on ∂Ω,
(22)

If (u⋆1 , u
⋆
2) ∈ W

1,p(x)
0 (Ω)×W

1,q(x)
0 (Ω) is a solution of (22) then

(ϕ⋆1, ψ
⋆
1) = T (u⋆1 , u

⋆
2) ∈ W−1,p′(x)(Ω)×W−1,q′(x)(Ω) is a solution of the fixed point problem{

(ϕ, ψ) = (S ◦ T )(ϕ, ψ) in Ω

(ϕ, ψ) = (0, 0) on ∂Ω,

where T is the inverse operator of L.
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Application II

F = S ◦ T : L∞(Ω)2 → L∞(Ω)2

We need to prove the following statements :

• S ◦ T is compact and differentiable over B(0,C ) ⊂ (L∞(Ω)2)

• (S ◦ T )(0, 0) = (S ◦ T )′(0, 0) = (0, 0)

• (0, 0) /∈ (I − tS ◦ T )(S(0,C ))

• Γ = {(u, v) ∈ B(0,C )\{(0, 0)} | (u, v) = S ◦ T (u, v)
and 1 is not an eigenvalue of (S ◦ T )′(u, v)} is not empty
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Additional hypotheses

(A1) pi ∈ C 1(Ω), 2 ≤ p−i ≤ p+i <∞ (i = 1, 2).

(A2) There exists bounded functions g : Ω× R2 → R2 and h : Ω× R2N → R2N

such that for any (u1, u2), (Φ1,Φ2) ∈ X−1,p′
1(x),p

′
2(x)(Ω),

S ′(u1, u2)[Φ1,Φ2] =< g(x , u1, u2), (Φ1,Φ2) >
+ < h(x ,∇u1,∇u2), (∇Φ1,∇Φ2) >

(A3) There exists C > 1 such that C (∥g(., u1, u2)∥∞ + ∥h(.,∇u1,∇u2)∥∞) < 1

Typical example : S(u, v) = (S1(u, v),S2(u, v)) with

Si (u, v) = ci (x)u
αi (x)vβi (x) + di (x)|∇u|γi (x) + ei (x)|∇v |γ i (x)
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Existence theorem

Theorem
Under assumptions (H) and (A), system (S) has at least two different non-trivial
solutions in C 1

0 (Ω)× C 1
0 (Ω).

[1] L. Li, Coexistence theorems of steady states for predator-prey interacting systems,
Transactions of the American Mathematical Society, 305(1), 143-166, 1988.
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Step 1 : S ◦ T is compact and differentiable over B(0,C )

(u1, u2) = T (z1, z2) if and only if (u1, u2) is the solution of the problem
−∆p1(x)u1 = z1 in Ω

−∆p2(x)u2 = z2 in Ω

(u1, u2) = (0, 0) on ∂Ω.

(23)

• Existence : (u1, u2) ∈ C 1,α
0 (Ω)2 (α ∈ (0, 1)) satisfying (23).

• Compact embedding : C 1,α
0 (Ω)2 ↪→ C 1

0 (Ω)
2

• Inverse compacity : T : L∞(Ω)2 → C 1
0 (Ω)

2 is compact.
• Continuity : S : C 1

0 (Ω)
2 → L∞(Ω)2 is continuous.
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Step 2 : (S ◦ T )(0, 0) = (S ◦ T )′(0, 0) = (0, 0) I

(S ◦ T )(0, 0) = (0, 0) ⇔ (0, 0) is a solution of{
−∆pi (x)ui = fi (x , u1, u2,∇u1,∇u2) in Ω

ui = 0 on ∂Ω

Since L ◦ T (g1, g2) = (g1, g2), it follows for any (Φ1,Φ2) ∈ L2(Ω)2 that

(L ◦ T )′(g1, g2)[Φ1,Φ2] = L′(T (g1, g2))[T
′(g1, g2)[Φ1,Φ2]]

= L′(u1, u2)(T
′(g1, g2)[Φ1,Φ2]) = (Φ1,Φ2),

(24)
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Step 2 : (S ◦ T )(0, 0) = (S ◦ T )′(0, 0) = (0, 0) II

• L′(u1, u2)(V1,V2) =
(
−div((p1(x)− 1)|∇u|p1(x)−2∇V1),−div((p2(x)− 1)|∇v |p2(x)−2∇V2)

)
• T ′(g1, g2)[Φ1,Φ2] = (L′(u1, u2))

−1(Φ1,Φ2),

• (S ◦ T )′(g1, g2)[Φ1,Φ2] = S ′(u1, u2)[T
′(g1, g2)[Φ1,Φ2]] = (0, 0)
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Step 3 : (0, 0) /∈ (I − tS ◦ T )(S(0,C ))

Let (z1, z2) ∈ B(0,C ), and for any t ∈ (0, 1) (u1, u2) = Tt(z1, z2), that is{
−∆pi (x)ui = tfi (x , z1, z2,∇z1,∇z2) in Ω

ui = 0 on ∂Ω
⇔ L(u1, u2) = tS(z1, z2).

Then

∥ui∥1,τ ≤ kpi ∥fi (., z1, z2,∇z1,∇z2)∥
1

p±
i

−1
∞ ≤ kpiMi

(
Cα+

i +β+
i + Cγ+

i + Cγ+
i

) 1
p−
i

−1 < C ,

for C sufficiently large. It follows that for any (z1, z2) ∈ S(0,C )

L(u1, u2) ̸= tS(z1, z2) ⇔ (I − tS ◦ T )(z1, z2) ̸= (0, 0).
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Step 4 : Γ is not empty I

Lemma

Under assumptions (H) and (A), let (u1, u2) ∈ C 1
0 (Ω)

2 satisfying

C (∥g(., u1, u2)∥∞ + ∥h(.,∇u1,∇u2)∥∞) < 1 (25)

where g , h are defined in (A2) and C > 1 is a constant large enough. Consider the set

E =

(V1,V2) ∈ H1
0 (Ω)

2 | 1 =
∑
i=1,2

∫
Ω

|∇ui |pi (x)−2|∇Vi |2dx , and
∑
i=1,2

∫
Ω

|∇Vi |2dx ≤ C

 ,

where C > 0 is the same constant as in (25). Then

inf
(V1,V2)∈E

{∫
Ω

< (Φ1,Φ2)− (S ◦ T )′(g1, g2)[Φ1,Φ2], (V1,V2) > dx

}
> 0,

where (Φ1,Φ2) = L′(u1, u2)(V1,V2) and (g1, g2) = L(u1, u2).
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Step 4 : Γ is not empty II

Proposition

Under assumptions (H) and (A), let (u1, u2) ∈ C 1
0 (Ω)

2 satisfying (25), and
(g1, g2) = L(u1, u2). Then 1 is not an eigenvalue of (S ◦ T )′(g1, g2).

[1] L. Li, Coexistence theorems of steady states for predator-prey interacting systems,
Transactions of the American Mathematical Society, 305(1), 143-166, 1988.
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Step 4 : Γ is not empty III

• (I − (S ◦ T )′(g1, g2))(ϕ1, ψ1) = λ1(I − (S ◦ T )′(g1, g2))(ϕ1, ψ1) > (0, 0)

• (I + P(1, 1)− h(., u1, u2))(ϕ1, ψ1) > ((S ◦ T )′(u1, u2) + P(1, 1)− h(., u1, u2)) (ϕ1, ψ1)

for any constant P > ∥g(., u1, u2)∥∞

• T ′(g1, g2) : L
2(Ω)2 → L2(Ω)2 is compact, linear and positive

• (S ◦ T )′(g1, g2)[Φ1,Φ2] + P(1, 1)(V1,V2)− h(.,∇u1,∇u2)(∇V1,∇V2) is compact,
linear and positive

• r
[
(I + P(1, 1)− h(., u1, u2))

−1A(u1, u2)
]
< 1 (Li’s theorem)
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Thank You
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