Revisitant

 les méthodes dérivées de la

 les méthodes dérivées de la
 décomposition d'opérateurs

Claudia Sagastizábal

IMECC-UNICAMP Brazil
Ce CeMEAI
SMAI 2023, Pointe à Pître 23 Mai 2023

Motivation: energy sources in Brazil

Motivation: what is the value of water for the energy business?

Decision

today

- Minimize immediate cost
by emptying reservoirs $\begin{cases}\text { rain } & \text { Decision ok } \\ \text { drought } & \text { Deficit }\end{cases}$

Motivation: what is the value of water for the energy business?

Decision

today

or

- Keep water, more \$\$\$ by thermal generation

Consequences
in the future
\quad Or

- Keep water, more \$\$\$
by thermal generation $\quad \begin{cases}\text { rain } & \text { Excess water } \\ \text { drought } & \text { Decision ok }\end{cases}$

The value of water is an opportunity/substitution cost

Given by the value function of a linear stochastic program
Depends on

- the initial reservoir volumes
- the uncertainty representation
- how uncertainty is handled in the optimization problem
- how the optimization problem is solved
- environmental constraints

Drives guvernamental policies and business decisions of (+400) agents in the energy sector of Brazil

ONS ${ }^{\text {qutiun }}$ Diagrama Esquemático das Usinas Hidroelétricas do SIN

Future cost of water: piecewise linear function

$$
v\left(x_{0}\right)= \begin{cases}\min _{u, x} & \mathbb{E}\left[\sum_{t=1}^{T} \sum_{i=1}^{N S} \sum_{j=1}^{T_{t}^{i}} c_{t}^{j} g_{t}^{i, j}\right] \\ & x_{t}^{i}+g h_{t}^{i}+s \operatorname{spill}_{t}^{i}=x_{t-1}^{i}+\gamma_{t}^{i} \xi_{t}^{i}-\text { evap }_{t}^{i} \\ & g h_{t}^{i}+\sum_{j \leq \tau_{t}^{i}} g_{t}^{i, j}+\sum_{\ell \in \mathscr{L}^{i}}\left(f_{t}^{\ell, i}-f_{t}^{i, \ell}\right) \geq \operatorname{dem}_{t}^{i}-\left(1-\gamma_{t}^{i}\right) \xi_{t}^{i} \\ & u^{\min } \leq u=(g h, \text { spill, }, g t, f) \leq u^{\max } \\ & x_{t}^{i, \min } \leq x_{t}^{i} \leq x_{t}^{i, \max }\end{cases}
$$

Future cost of water: piecewise linear function

$$
v\left(x_{0}\right)=\left\{\begin{array}{lll}
\min _{u, x} & \mathbb{E}\left[\sum_{t=1}^{T} \sum_{i=1}^{N S} \sum_{j=1}^{T_{t}^{i}} c_{t}^{j} g_{t}^{i, j}\right] \\
& x_{t}^{i}+g h_{t}^{i}+s \operatorname{sill}_{t}^{i}=x_{t-1}^{i}+\gamma_{t}^{i} \xi_{t}^{i}-\text { evap }_{t}^{i} & \text { (BAL) } \\
& g h_{t}^{i}+\sum_{j \leq \tau_{t}^{i}} g_{t}^{i, j}+\sum_{\ell \in \mathscr{L}^{i}}\left(f_{t}^{\ell, i}-f_{t}^{i, \ell}\right) \geq \operatorname{dem}_{t}^{i}-\left(1-\gamma_{t}^{i}\right) \xi_{t}^{i} & \text { (DEM) } \\
& u^{\min } \leq u=(g h, \text { spill, } g t, f) \leq u^{\max } & \\
& x_{t}^{i, \min } \leq x_{t}^{i} \leq x_{t}^{i, \max } & \text { (BOX) }
\end{array}\right.
$$

With 3 hydro conditions, \{normal, wet, dry\} for $T=4$ months, there are 3^{3} scenarios

Future cost of water: piecewise linear function

$$
v\left(x_{0}\right)=\left\{\begin{array}{lll}
\min _{u, x} & \mathbb{E}\left[\sum_{t=1}^{T} \sum_{i=1}^{N S} \sum_{j=1}^{T_{t}^{i}} c_{t}^{j} g_{t}^{i, j}\right] \\
& x_{t}^{i}+g h_{t}^{i}+s p i l I_{t}^{i}=x_{t-1}^{i}+\gamma_{t}^{i} \xi_{t}^{i}-\text { evap }_{t}^{i} & \text { (BAL) } \\
& g h_{t}^{i}+\sum_{j \leq T_{t}^{i}} g_{t}^{i, j}+\sum_{\ell \in \mathscr{L}^{i}}\left(f_{t}^{\ell, i}-f_{t}^{i, \ell}\right) \geq \operatorname{dem}_{t}^{i}-\left(1-\gamma_{t}^{i}\right) \xi_{t}^{i} & \text { (DEM) } \\
& u^{\min } \leq u=\left(g h, \text { spill,gt,f)} \leq u^{\max }\right. & \\
& x_{t}^{i, \min } \leq x_{t}^{i} \leq x_{t}^{i, \max } & \text { (BOX) }
\end{array}\right.
$$

With 3 hydro conditions, $\left\{\right.$ normal, wet, dry\} for $T=4$ months, there are 3^{3} scenarios
real problem considers 10 years ($T=120$ months)
it has 20^{119} scenarios!!!

Future cost of water: piecewise linear function

$$
\begin{aligned}
& \mathbb{E}\left[\sum_{t=1}^{T} \sum_{i=1}^{N S} \sum_{j=1}^{T_{t}^{i}} c_{t}^{j} g_{t}^{i, j}\right] \\
& x_{t}^{i}+g h_{t}^{i}+s \text { sill }_{t}^{j}=x_{t-1}^{i}+\gamma_{t}^{i} \xi_{t}^{i}-\text { evapapt }_{t}^{i} \\
& g h_{t}^{i}+\sum_{j \leq T_{t}^{T}} g_{t}^{i, j}+\sum_{l \in \mathscr{L}^{i}}\left(f_{t}^{\ell, i}-f_{t}^{i, \ell}\right) \geq \operatorname{dem}_{t}^{i}-\left(1-\gamma_{t}^{i}\right) \xi_{t}^{i} \\
& u^{\min } \leq u=(g h, \text { spill, gt, } f) \leq u^{\max } \\
& x_{t}^{i, \min } \leq x_{t}^{i} \leq x_{t}^{i, m a x}
\end{aligned}
$$

With 3 hydro conditions, $\left\{\right.$ normal, wet, dry\} for $T=4$ months, there are 3^{3} scenarios
real problem considers 10 years ($T=120$ months)
it has 20^{119} scenarios!!!

Future cost of water: piecewise linear function (parallel computation!)

$$
\begin{aligned}
& \mathbb{E}\left[\sum_{t=1}^{T} \sum_{i=1}^{N S} \sum_{j=1}^{T_{t}^{i}} c_{t}^{j} g_{t}^{i, j}\right] \\
& x_{t}^{i}+g h_{t}^{i}+s \operatorname{sillil}_{t}^{i}=x_{t-1}^{i}+\gamma_{t}^{i} \xi_{t}^{i}-e \operatorname{vap}_{t}^{i} \\
& g h_{t}^{i}+\sum_{j \leq T_{t}}^{i, j} g_{t}^{i, j}+\sum_{\ell \in \mathscr{L}^{i}}\left(f_{t}^{\ell, i}-f_{t}^{i, \ell}\right) \geq d e m_{t}^{i}-\left(1-\gamma_{t}^{i}\right) \xi_{t}^{i} \\
& u^{\min } \leq u=(g h, s \operatorname{lill}, g t, f) \leq u^{\max } \\
& x_{t}^{i, \min } \leq x_{t}^{i} \leq x_{t}^{i^{, i m a x}}
\end{aligned}
$$

With 3 hydro conditions, \{normal, wet, dry\} for $T=4$ months, there are 3^{3} scenarios
real problem considers 10 years ($T=120$ months)
it has 20^{119} scenarios!!!

The Triangle of Splitting Methods

Splitting Timeline - some milestones

Splitting Timeline - some milestones

- Constructive scheme for linear dynamical systems
with structure
$\mathbf{0}=\left(\mathbf{A}^{\mathbf{1}}+\mathbf{A}^{\mathbf{2}}\right) \mathbf{x}(\mathbf{t})+\mathbf{x}^{\prime}(\mathbf{t})$

Splitting Timeline - some milestones

- Constructive scheme for linear dynamical systems with structure
$\mathbf{0}=\left(\mathbf{A}^{1}+\mathbf{A}^{2}\right) \mathbf{x}(\mathbf{t})+\mathbf{x}^{\prime}(\mathbf{t})$
- Nonlinear systems
$0=\left(A^{1}+A^{2}\right)(x, t)+x^{\prime}(t)$ (backward Euler for $A^{1}+$ forward Euler for A^{2})

Splitting Timeline - some milestones

Splitting Timeline - some milestones

- Constructive scheme for linear dynamical systems with structure
$\mathbf{0}=\left(\mathbf{A}^{1}+\mathbf{A}^{2}\right) \mathbf{x}(\mathbf{t})+\mathbf{x}^{\prime}(\mathbf{t})$
- Nonlinear systems

$\mathbf{0}=\left(\mathbf{A}^{1}+\mathbf{A}^{2}\right)(\mathbf{x}, \mathbf{t})+\mathbf{x}^{\prime}(\mathbf{t})$

 (backward Euler for $A^{1}+$ forward Euler for A^{2})- Multivalued equations $0 \in\left(A^{1}+A^{2}\right)(x, t)$
(Gabay, Glowinski, Marroco, Le Tallec \supset ADMM)

Splitting Timeline - some milestones

Splitting Timeline - some milestones

• Constructive scheme for
linear dynamical systems
with structure
$0=\left(\mathbf{A}^{1}+\mathbf{A}^{2}\right) \mathbf{x}(\mathrm{t})+\mathrm{x}^{\prime}(\mathrm{t})$
• Nonlinear systems
$0=\left(\mathrm{A}^{1}+\mathrm{A}^{2}\right)(\mathrm{x}, \mathrm{t})+\mathrm{x}^{\prime}(\mathrm{t})$
(backward Euler for $\mathrm{A}^{1}+$ forward Euler for $\left.\mathrm{A}^{2}\right)$

Splitting cloud:

dynamical systems, multivalued equations, distributed optimization, statistical learning

Splitting cloud:

dynamical systems, multivalued equations, distributed optimization, statistical learning

$$
0 \in A(x) \text { for } A=A^{1}+A^{2}
$$

Splitting cloud:

dynamical systems, multivalued equations, distributed optimization, statistical learning

$$
0 \in A(x) \text { for } A=A^{1}+A^{2}
$$ akin to Newton's method

$$
0=\nabla f(x)
$$

dynamical systems, multivalued equations, distributed optimization, statistical learning

$0 \in A(x)$ for $A=A^{1}+A^{2}$ akin to Newton's method

$$
0=\nabla f(x)
$$

Can we exploit further

knowing $A=\partial f$?

Un petit détour...

source: Sarah Dry's wordpress

Newton's method for nonlinear systems

$$
\begin{aligned}
0 & =G\left(x^{*}\right) \\
& \approx G\left(x^{k}\right)+G^{\prime}\left(x^{k}\right) d^{k} \\
& \text { fast convergence } x^{k+1}=x^{k}+d^{k}
\end{aligned}
$$

Newton's method for nonlinear systems

$$
\begin{aligned}
0 & =G\left(x^{*}\right) \\
& \approx G\left(x^{k}\right)+G^{\prime}\left(x^{k}\right) d^{k} \\
& \text { fast convergence } x^{k+1}=x^{k}+d^{k}
\end{aligned}
$$

Newton method is

$$
G(x)=1+x+x^{3} / 3
$$

1	2.00000000000000	0
2	0.86666666666667	1
3	-0.32323745064862	1
4	-0.92578663808031	1
5	-0.82332584261905	2
6	-0.81774699537697	5
7	-0.81773167400186	9
8	-0.81773167388682	15
Newton		

What about Newton's method for optimization?

$$
\begin{aligned}
& 0=G\left(x^{*}\right) \\
& \approx G\left(x^{k}\right)+G^{\prime}\left(x^{k}\right) d^{k} \\
& \text { fast convergence }
\end{aligned}
$$

What about Newton's method for optimization?

$$
\begin{aligned}
0 & =G\left(x^{*}\right) \\
& \approx \frac{G\left(x^{k}\right)+G^{\prime}\left(x^{k}\right) d^{k}}{\text { fast convergence }}
\end{aligned}
$$

In optimization
$G(x)=\nabla f(x) \quad$ for an objective f

What about Newton's method for optimization?

$$
\begin{aligned}
& 0=\nabla f\left(x^{*}\right) \\
& \approx \nabla f\left(x^{k}\right)+\nabla^{2} f\left(x^{k}\right) d^{k} \\
& \text { fast convergence } \\
& x^{k+1}=x^{k}-\left[\nabla^{2} f\left(x^{k}\right)\right]^{-1} \nabla f\left(x^{k}\right) \\
& \quad \text { for an objective } f
\end{aligned}
$$

What about Newton's method for optimization?

$$
\begin{aligned}
0 & =\nabla f\left(x^{*}\right) \\
& \approx \nabla f\left(x^{k}\right)+\nabla^{2} f\left(x^{k}\right) d^{k}
\end{aligned}
$$

fast convergence

$$
x^{k+1}=x^{k}-\left[\nabla^{2} f\left(x^{k}\right)\right]^{-1} \nabla f\left(x^{k}\right)
$$

for an objective f
$\min f \approx \min f$-model

$$
\min _{d} f\left(x^{k}\right)+\left\langle\nabla f\left(x^{k}\right), d\right\rangle+\frac{1}{2}\left\langle\nabla^{2} f\left(x^{k}\right) d, d\right\rangle
$$

Newton iterates for optimization

Can we avoid computing the Hessian matrix?

Newton iterates for optimization

Can we avoid computing the Hessian matrix? YES!

$$
\min _{d} f\left(x^{k}\right)+\left\langle\nabla f\left(x^{k}\right), d\right\rangle+\frac{1}{2}\left\langle M^{k} d, d\right\rangle
$$

Newton iterates for optimization

Can we avoid computing the Hessian matrix? YES!

$$
\min _{d} f\left(x^{k}\right)+\left\langle\nabla f\left(x^{k}\right), d\right\rangle+\frac{1}{2}\left\langle M^{k} d, d\right\rangle
$$

Newton iterates for optimization

Can we avoid computing the Hessian matrix? YES!

$$
\min _{d} f\left(x^{k}\right)+\left\langle\nabla f\left(x^{k}\right), d\right\rangle+\frac{1}{2}\left\langle\boldsymbol{M}^{k} d, d\right\rangle
$$

quasi-Newton iterates for optimization

Eventually, the true Hessian curvature is estimated only along the generated directions

1	2.00000000000000	0	1	2.00000000000000	0
2	1.5000000000000	0	2	0.86666666666667	1
3	0.61224489795918	1	3	-0.32323745064862	1
4	-0.16202797536640	1	4	-0.92578663808031	1
5	-0.92209500449059	1	5	-0.82332584261905	2
6	-0.78540447895661	1	6	-0.81774699537697	5
7	-0.81609056319699	3	7	-0.81773167400186	9
8	-0.81775774021392	5	8	-0.81773167388682	15
9	-0.81773165292101	8	Newton		
10	-0.81773167388656	13			
11	-0.81773167388682	15			
quasi=Newton					

quasi-Newton methods are

too!

1	2.00000000000000	0
2	1.50000000000000	0
3	0.61224489795918	1
4	-0.16202797536640	1
5	-0.92209500449059	1
6	-0.78540447895661	1
7	-0.81609056319699	3
8	-0.81775774021392	5
9	-0.81773165292101	8
10	-0.81773167388656	13
11	-0.81773167388682	15
quasilinewton		

1	2.00000000000000	0
2	0.86666666666667	1
3	-0.32323745064862	1
4	-0.92578663808031	1
5	-0.82332584261905	2
6	-0.81774699537697	5
7	-0.81773167400186	9
8	-0.81773167388682	15
Newton		

. . . fin du détour

Splitting variants stem from primal and dual formulations

Applied to optimality conditions of

$$
\min _{x} f^{1}(x)+f^{2}(M x)
$$

$$
0 \in \partial f^{1}(x)+M^{\top} \partial f^{2}(M x)
$$

$$
\left\{\begin{array}{l}
k \text { th subproblem on } \partial f^{1} \\
k \text { th subproblem on } \partial f^{2}
\end{array}\right.
$$

Splitting variants stem from primal and dual formulations

Applied to optimality conditions of

$$
\min _{x} f^{1}(x)+f^{2}(M x)
$$

$$
0 \in \partial f^{1}(x)+M^{\top} \partial f^{2}(M x)
$$

$$
\left\{\begin{array}{l}
k \text { th subproblem on } \partial f^{1} \\
k \text { th subproblem on } \partial f^{2}
\end{array}\right.
$$

or its dual:

$$
\begin{aligned}
\max _{w}-f^{1^{*}}\left(-M^{\top} w\right)-f^{2^{*}}(w) \quad & 0 \in M \partial f^{1^{*}}\left(-M^{\top} w\right)+\partial f^{2^{*}}(w) \\
& \left\{\begin{array}{l}
k \text { th subproblem on } \partial f^{1^{*}} \\
k \text { th subproblem on } \partial f^{2^{*}}
\end{array}\right.
\end{aligned}
$$

Splitting variants stem from primal and dual formulations

Applied to optimality conditions of

$$
\min _{x} f^{1}(x)+f^{2}(M x)
$$

$$
\begin{aligned}
& 0 \in \partial f^{1}(x)+M^{\top} \partial f^{2}(M x) \\
& \left\{\begin{array}{l}
k \text { th subproblem on } \partial f^{1} \\
k \text { th subproblem on } \partial f^{2}
\end{array}\right.
\end{aligned}
$$

or its dual:

$$
\max _{w}-f^{1^{*}}\left(-M^{\top} w\right)-f^{2^{*}}(w)
$$

$$
0 \in M \partial f^{1^{*}}\left(-M^{\top} w\right)+\partial f^{2^{*}}(w)
$$

$$
\left\{\begin{array}{l}
k \text { th subproblem on } \partial f^{1^{*}} \\
k \text { th subproblem on } \partial f^{* *}
\end{array}\right.
$$

Considering $x=\left(x^{1}, x^{2}\right)$

$$
\min _{x^{1}, x^{2}} f^{1}\left(x^{1}\right)+f^{2}\left(x^{2}\right) \quad \text { s.t. } \quad A^{1} x^{1}+A^{2} x^{2}=0
$$

Splitting variants stem from primal and dual formulations

Applied to optimality conditions of

$$
\begin{aligned}
\min _{x} f^{1}(x)+f^{2}(M x) & 0 \in \partial f^{1}(x)+M^{\top} \partial f^{2}(M x) \\
& \left\{\begin{array}{l}
k \text { th subproblem on } \partial f^{1} \\
k \text { th subproblem on } \partial f^{2}
\end{array}\right.
\end{aligned}
$$

or its dual:

$$
\max _{w}-f^{1^{*}}\left(-M^{\top} w\right)-f^{2^{*}}(w) \quad 0 \in M \partial f^{1^{*}}\left(-M^{\top} w\right)+\partial f^{2^{*}}(w)
$$

$$
\left\{\begin{array}{l}
k \text { th subproblem on } \partial f^{1^{*}} \\
k \text { th subproblem on } \partial f^{2^{*}}
\end{array}\right.
$$

Considering $x=\left(x^{1}, x^{2}\right)$

$$
\min _{x^{1} x^{2}} f^{1}\left(x^{1}\right)+f^{2}\left(x^{2}\right) \quad \text { s.t. } \quad A^{1} x^{1}+A^{2} x^{2}=0
$$

write Lagrangian to make kth-subproblems easy

Splitting variants stem from primal and dual formulations

Rewriting often results from efforts to make k th-subproblems easy, for

$$
\min _{x^{1}, x^{2}} f^{1}\left(x^{1}\right)+f^{2}\left(x^{2}\right) \quad \text { s.t. } \quad A^{1} x^{1}+A^{2} x^{2}=0
$$

Splitting variants stem from primal and dual formulations

Rewriting often results from efforts to make k th-subproblems easy, for

$$
\begin{aligned}
& \min _{x^{1}, x^{2}} f^{1}\left(x^{1}\right)+f^{2}\left(x^{2}\right) \quad \text { s.t. } \quad A^{1} x^{1}+A^{2} x^{2}=0 \\
& \text { Lagrangian } \quad \begin{aligned}
L(x, w) & =\sum_{s=1}^{2}\left(f^{s}\left(x^{s}\right)+\left\langle A^{s \top} w, x^{s}\right\rangle\right) \\
& =\sum_{s=1}^{2} L^{s}\left(x^{s}, w\right)
\end{aligned}, \$ \text {, }
\end{aligned}
$$

Splitting variants stem from primal and dual formulations

Rewriting often results from efforts to make k th-subproblems easy, for

$$
\min _{x^{1}, x^{2}} f^{1}\left(x^{1}\right)+f^{2}\left(x^{2}\right) \quad \text { s.t. } \quad A^{1} x^{1}+A^{2} x^{2}=0
$$

Lagrangian $\quad L(x, w)=\sum_{s=1}^{2}\left(f^{s}\left(x^{s}\right)+\left\langle A^{s \top} w, x^{s}\right\rangle\right)$

$$
=\sum_{s=1}^{2} L^{s}\left(x^{s}, w\right)
$$

Lagrangian relaxation approach

Primal step Having dual iterate w^{k}, solve primal subproblems

$$
\min _{x} L\left(x, w^{k}\right)=\sum_{s} \min _{\mathbf{x}^{\mathbf{s}}} L\left(\mathbf{x}^{\mathbf{s}}, w^{k}\right)
$$

Dual step Use primal output to update dual variable

Rewriting often involves constraint with a simple subspace

Compressed sensing

$$
\min _{x^{1}} \quad \frac{1}{2}\left\|R T x^{1}-a\right\|_{2}^{2}+\lambda\left\|A^{1} x^{1}\right\|_{1}
$$

Rewriting often involves constraint with a simple subspace

Compressed sensing

$$
\begin{cases}\min _{x^{1}, x^{2}} & \frac{1}{2}\left\|R T x^{1}-a\right\|_{2}^{2}+\lambda\left\|x^{2}\right\|_{1} \\ \text { s.t. } & A^{1} x^{1}-x^{2}=0\end{cases}
$$

Rewriting often involves constraint with a simple subspace

Compressed sensing

$$
\begin{cases}\min _{x^{1}, x^{2}} & \frac{1}{2}\left\|R T x^{1}-a\right\|_{2}+\lambda\left\|x^{2}\right\|_{1} \\
\text { s.t. } & A^{1} x^{1}-x^{2}=0 \\
x \in N:=\left\{\left(x^{1}, x^{2}\right):\left[\begin{array}{c}
A^{1} \\
-1
\end{array}\right]\binom{x^{1}}{x^{2}}=0\right\}\end{cases}
$$

Rewriting often involves constraint with a simple subspace

Compressed sensing

$$
\begin{cases}\min _{x^{1}, x^{2}} & \frac{1}{2}\left\|R T x^{1}-a\right\|_{2}^{2}+\lambda\left\|x^{2}\right\|_{1} \\
\text { s.t. } & A^{1} x^{1}-x^{2}=0 \\
x \in N:=\left\{\left(x^{1}, x^{2}\right):\left[\begin{array}{c}
A^{1} \\
-1
\end{array}\right]\binom{x^{1}}{x^{2}}=0\right\}\end{cases}
$$

Progressive hedging

$\begin{cases}\min _{x} & \mathbb{E}\left[f^{S}(x)\right] \\ \text { s.t. } & x \in X^{S} \\ & \vdots \vdots \\ & \end{cases}$

Rewriting often involves constraint with a simple subspace

Compressed sensing

$$
\begin{cases}\min _{x^{1}, x^{2}} & \frac{1}{2}\left\|R T x^{1}-a\right\|_{2}^{2}+\lambda\left\|x^{2}\right\|_{1} \\
\text { s.t. } & A^{1} x^{1}-x^{2}=0 \\
x \in N:=\left\{\left(x^{1}, x^{2}\right):\left[\begin{array}{c}
A^{1} \\
-1
\end{array}\right]\binom{x^{1}}{x^{2}}=0\right\}\end{cases}
$$

Progressive hedging

Progressive hedging rewriting

$n=1 \quad n=2 \quad n=3$

Progressive hedging rewriting

$n=1 \quad n=2 \quad n=3$

Progressive hedging rewriting

$n=1 \quad n=2 \quad n=3$

Progressive hedging rewriting

$n=1 \quad n=2 \quad n=3$

Progressive hedging rewriting

$$
n=1
$$

$$
n=2
$$

$$
n=3
$$

$n=1 \quad n=2 \quad n=3$

Splitting variants stem from primal and dual formulations

Rewriting often results from efforts to make k th-subproblems easy, for

$$
\begin{aligned}
\min _{\left(x^{1}, x^{2}, \ldots, x^{s}, \ldots\right)} \sum_{s} f^{s}\left(x^{s}\right) & \text { s.t. } \sum_{s} A^{s} x^{s}=0 \\
\text { Lagrangian } & =\sum_{s} L^{s}\left(x^{s}, w\right)
\end{aligned}
$$

Lagrangian relaxation approach

Primal step Having dual iterate w^{k}, solve primal subproblems

$$
\min _{x} L\left(x, w^{k}\right)=\sum_{s} \min _{x^{s}} L\left(x^{s}, w^{k}\right)
$$

Dual step Use primal output to update dual variable

Splitting variants stem from primal and dual formulations

Rewriting often results from efforts to make k th-subproblems easy, for

$$
\min _{\left(x^{1}, x^{2}, \ldots, x^{s}, \ldots\right)} \sum_{s} f^{s}\left(x^{s}\right) \quad \text { s.t. } \quad \sum_{s} A^{s} x^{s}=0
$$

Augmented Lagrangian

$$
L_{t_{0}}(x, w)=\sum_{s}\left(f^{s}\left(x^{s}\right)+\left\langle A^{s \top} w, x^{s}\right\rangle\right)+\frac{t_{0}}{2}\left\|\sum_{s} A^{s} x^{s}\right\|^{2}=\sum_{s} L^{s}\left(x^{s}, w\right)+\frac{t_{0}}{2}\left\|\sum_{s} A^{s} x^{s}\right\|^{2}
$$

Augmented Lagrangian relaxation approach (1stry, naive)

Primal step Having dual iterate w^{k}, solve primal subproblems

$$
\min _{x} L_{t_{0}}\left(x, w^{k}\right) \neq \sum_{s} \min _{x^{s}} L_{t_{0}}^{s}\left(\mathbf{x}^{\mathbf{s}}, w^{k}\right)
$$

Dual step Use primal output to update dual variable

Splitting variants stem from primal and dual formulations

Rewriting often results from efforts to make k th-subproblems easy, for

$$
\min _{\left(x^{1}, x^{2}, \ldots, x^{s}, \ldots\right)} \sum_{s} f^{s}\left(x^{s}\right) \quad \text { s.t. } \quad \sum_{s} A^{s} x^{s}=0
$$

Augmented Lagrangian is not separable

$$
\begin{aligned}
L_{t_{0}}(x, w) & =\sum_{s}\left(f^{s}\left(x^{s}\right)+\left\langle A^{s \top} w, x^{s}\right\rangle\right)+\frac{t_{0}}{2}\left\|\sum_{s} A^{s} x^{s}\right\|^{2}=\sum_{s} L^{s}\left(x^{s}, w\right)+\frac{t_{0}}{2}\left\|\sum_{s} A^{s} x^{s}\right\|^{2} \\
& \approx \mathbb{L}^{k}(x, w) \text { separable }
\end{aligned}
$$

Augmented Lagrangian relaxation approach

Primal step Having dual iterate w^{k}, solve approximate primal subproblems

$$
\min _{x} \mathbb{L}^{k}\left(x, w^{k}\right)=\sum_{s} \min _{\mathbf{x}^{s}} L_{t_{0}}\left(\left(\mathbf{x}^{\mathbf{s}}, x^{k,-s}\right), w^{k}\right)
$$

Project primal output onto \mathbf{N}
Dual step Use primal output to update dual variable

The progressive hedging algorithm (RW91)

Given $x^{k}=\left(x^{k, s}: s \in S\right) \in \mathbf{N}$ and $w^{k}=\left(w^{k, s}: s \in S\right) \in \mathbf{N}^{\perp}$ and a fixed prox-parameter $t_{0}>0$

The progressive hedging algorithm (RW91)

Given $x^{k}=\left(x^{k, s}: s \in S\right) \in \mathbf{N}$ and $w^{k}=\left(w^{k, s}: s \in S\right) \in \mathbf{N}^{\perp}$ and a fixed prox-parameter $t_{0}>0$

1. solves in parallel $x^{k+\frac{1}{2}, s}=\arg \min _{\mathbf{x}^{s}} L_{t_{0}}\left(\left(\mathbf{x}^{s}, x^{k,-s}\right), w^{k, s}\right)$

The progressive hedging algorithm (RW91)

Given $x^{k}=\left(x^{k, s}: s \in S\right) \in \mathbf{N}$ and $w^{k}=\left(w^{k, s}: s \in S\right) \in \mathbf{N}^{\perp}$ and a fixed prox-parameter $t_{0}>0$

1. solves in parallel $x^{k+\frac{1}{2}, s}=\arg \min _{\mathbf{x}^{s}} L_{t_{0}}\left(\left(\mathbf{x}^{s}, x^{k,-s}\right), w^{k, s}\right)$

2. projects onto
\mathbf{N} to define x^{k+1}

The progressive hedging algorithm (RW91)

Given $x^{k}=\left(x^{k, s}: s \in S\right) \in \mathbf{N}$ and $w^{k}=\left(w^{k, s}: s \in S\right) \in \mathbf{N}^{\perp}$ and a fixed prox-parameter $t_{0}>0$

1. solves in parallel $x^{k+\frac{1}{2}, s}=\arg \min _{\mathbf{x}^{s}} L_{t_{0}}\left(\left(\mathbf{x}^{s}, x^{k,-s}\right), w^{k, s}\right)$

2. projects onto
\mathbf{N} to define x^{k+1}
3. computes

$$
w^{k+1}=w^{k}+t_{0}\left(x^{k+\frac{1}{2}}-x^{k}\right)
$$

The progressive hedging algorithm (RW91)

Given $x^{k}=\left(x^{k, s}: s \in S\right) \in \mathbf{N}$ and $w^{k}=\left(w^{k, s}: s \in S\right) \in \mathbf{N}^{\perp}$ and a fixed prox-parameter $t_{0}>0$

1. solves in parallel $x^{k+\frac{1}{2}, s}=\arg \min _{\mathbf{x}^{s}} L_{t_{0}}\left(\left(\mathbf{x}^{s}, x^{k,-s}\right), w^{k, s}\right)$

BUT convergence relies on DR for OC cannot vary t_{0}, it remains fixed!
2. projects onto
3. computes
\mathbf{N} to define x^{k+1}

$$
w^{k+1}=w^{k}+t_{0}\left(x^{k+\frac{1}{2}}-x^{k}\right)
$$

The progressive hedging algorithm (RW91)

Given $x^{k}=\left(x^{k, s}: s \in S\right) \in \mathbf{N}$ and $w^{k}=\left(w^{k, s}: s \in S\right) \in \mathbf{N}^{\perp}$ and a fixed prox-parameter $t_{0}>0$

1. solves in parallel $x^{k+\frac{1}{2}, s}=\arg \min _{\mathbf{x}^{s}} L_{t_{0}}\left(\left(\mathbf{x}^{s}, x^{k,-s}\right), w^{k, s}\right)$

2. projects onto
\mathbf{N} to define x^{k+1}
3. computes

$$
w^{k+1}=w^{k}+t_{0}\left(x^{k+\frac{1}{2}}-x^{k}\right)
$$

The progressive hedging algorithm (RW91)

Given $x^{k}=\left(x^{k, s}: s \in S\right) \in \mathbf{N}$ and $w^{k}=\left(w^{k, s}: s \in S\right) \in \mathbf{N}^{\perp}$ and a fixed prox-parameter $t_{0}>0$

1. solves in parallel $\left.\left.x^{k+\frac{1}{2}, s}=\arg \min _{x s}, ~ A>s\right), w^{k, s}\right)$

The projective trick

1. Find primal intermediate points in parallel

$$
x^{k+\frac{1}{2}, s}=\arg \min _{\mathbf{x}^{s}} L_{t_{0}}\left(\left(\mathbf{x}^{\mathbf{s}}, x^{k,-s}\right), w^{k, s}\right)
$$

2. Project primal iterate onto \mathbf{N}
3. Update dual iterate

The projective trick

1. Find primal intermediate points in parallel

$$
\begin{aligned}
x^{k+\frac{1}{2}, s} & =\arg \min _{x^{s}} L_{t_{0}}\left(\left(x^{s}, x^{k,-s}\right), w^{k, s}\right) \\
x^{k+\frac{1}{2}, s} & =\operatorname{prox}_{\mathbb{L}^{k, s}}\left(\cdot, w^{k, s}\right)\left(x^{k, s}\right)
\end{aligned}
$$

2. Project primal iterate onto \mathbf{N}
3. Update dual iterate

The projective trick

1. Find primal intermediate points in parallel

$$
\begin{aligned}
x^{k+\frac{1}{2}, s} & =\arg \min _{t^{s}} L_{t_{0}}\left(\left(x^{s}, x^{k,-s}\right), w^{k, s}\right) \\
x^{k+\frac{1}{2}, s} & =\operatorname{prox}_{\mathbb{L}^{k, s}}\left(\cdot, w^{k, s}\right)\left(x^{k, s}\right)
\end{aligned}
$$

2. Project primal iterate onto \mathbf{N}
3. Update dual iterate
\Longrightarrow let's interpret primal update in terms of the dual problem

The projective trick

1. Find primal intermediate points in parallel

$$
\begin{aligned}
x^{k+\frac{1}{2}, s} & =\arg \min _{x^{s}} L_{t_{0}}\left(\left(x^{s}, x^{k,-s}\right), w^{k, s}\right) \\
x^{k+\frac{1}{2}, s} & =\operatorname{prox}_{\mathbb{L}^{k, s}}\left(\cdot, w^{k, s}\right)\left(x^{k, s}\right)
\end{aligned}
$$

2. Project primal iterate onto \mathbf{N}
3. Update dual iterate
\Longrightarrow let's interpret primal update in terms of the dual problem

$$
\text { DUAL solves iteratively } \begin{cases}\min & H(w)=\sum_{s} H^{s}\left(w^{s}\right) \\ \text { s.t. } & w \in \mathbf{N}^{\perp}\end{cases}
$$

by computing proximal points for individual models $\mathbb{H}^{k, s}$

The projective trick in the dual

1. Find dual intermediate points in parallel

$$
w^{k+\frac{1}{2}, s}=\operatorname{prox}_{\mathbb{H}^{k}, s}^{\frac{1}{t_{0}}}\left(w^{k, s}\right)
$$

2. Project dual iterate onto \mathbf{N}^{\perp}
3. Update primal iterate

The projective trick in the dual

1. Find dual intermediate points in parallel

$$
w^{k+\frac{1}{2}, s}=\operatorname{prox}_{\mathbb{H}^{k}, s}^{\frac{1}{t_{0}}}\left(w^{k, s}\right)
$$

2. Project dual iterate onto \mathbf{N}^{\perp}
3. Update primal iterate
\Longrightarrow by computing proximal points for individual models $\mathbb{H}^{k, s}$ in the dual problem we can now compare
the dual models $\mathbb{H}^{k, s}$ with the dual functions H^{s}

The projective trick in the dual

1. Find dual intermediate points in parallel

$$
w^{k+\frac{1}{2}, s}=\operatorname{prox}_{\mathbb{H}^{k}, s}^{\frac{1}{t_{0}}}\left(w^{k, s}\right)
$$

2. Project dual iterate onto \mathbf{N}^{\perp}
3. Update primal iterate
\Longrightarrow by computing proximal points for individual models $\mathbb{H}^{k, s}$ in the dual problem we can now compare
the dual models $\mathbb{H}^{k, s}$ with the dual functions H^{s}

- Bad fit: decrease t_{0}
- Good fit: ok! t_{0} can increase

The projective trick in the dual

1. Find dual intermediate points in parallel

$$
w^{k+\frac{1}{2}, s}=\operatorname{prox}_{\mathbb{H}^{k}, s}^{\frac{1}{t_{0}}}\left(w^{k, s}\right)
$$

2. Project dual iterate onto \mathbf{N}^{\perp}
3. Update primal iterate
\Longrightarrow by computing proximal points for individual models $\mathbb{H}^{k, s}$ in the dual problem we can now compare
the dual models $\mathbb{H}^{k, s}$ with the dual functions H^{s}

- Bad fit: decrease t_{0}
- Good fit: ok! t_{0} can increase

Bad/good fit dichotomy \equiv null/serious steps in bundle methods

Goodies of Bundle PH - convergence

\Longrightarrow allows to increase/decrease t_{k}

fits model-based descent theory (Atenas, Sagastizábal, Silva, Solodov, SiOPT 2023), extended to handle projective step(Atenas, Sagastizábal, JoCA 2023)

Goodies of Bundle PH - convergence

\Longrightarrow allows to increase/decrease t_{k}

fits model-based descent theory (Atenas, Sagastizábal, Silva, Solodov, SiOPT 2023), extended to handle projective step(Atenas, Sagastizábal, JoCA 2023)

If $t_{k+1} \in\left[t_{\text {min }}, t_{\text {max }}\right]$

- Convergence for infinite subsequence of serious steps
-Global convergence with linear rate if error bound
- Convergence for infinite tail of null steps
-Last generated serious iterate was optimal
-The null tail converges to last serious
-no rate

Goodies of Bundle PH - convergence

\Longrightarrow allows to increase/decrease t_{k}

fits model-based descent theory (Atenas, Sagastizábal, Silva, Solodov, SiOPT 2023), extended to handle projective step(Atenas, Sagastizábal, JoCA 2023)

If $t_{k+1} \in\left[t_{\text {min }}, t_{\text {max }}\right]$

- Convergence for infinite subsequence of serious steps
-Global convergence with linear rate if error bound
- Convergence for infinite tail of null steps
-Last generated serious iterate was optimal
-The null tail converges to last serious
-no rate

\Longrightarrow implementable stopping test!

Goodies of Bundle PH - Performance

To know more: related references

Bonus track

- The family of proximal decomposition methods (separable augmented Lagrangians by Philippe Mahey, Adam Ouorou, Jean-Pierre Dussault, co-authors)

$$
\left\{\begin{array}{ll}
\min _{x} & \sum_{j} f_{j}\left(x_{j}\right) \\
\text { s.t. } & x_{j} \in S_{j} \\
& \sum_{j} g_{j}\left(x_{j}\right)=0
\end{array} \quad \forall j\right.
$$

Bonus track

- The family of proximal decomposition methods (separable augmented Lagrangians by Philippe Mahey, Adam Ouorou, Jean-Pierre Dussault, co-authors)

$$
\left\{\begin{array}{lll}
\min _{x, y} & \sum_{j} f_{j}\left(x_{j}\right) & \\
\text { s.t. } & x_{j} \in S_{j} & \forall j \\
& g_{j}\left(x_{j}\right)+y_{j}=0 \quad \forall j \\
& \sum_{j} y_{j}=0
\end{array}\right.
$$

Bonus track

- The family of proximal decomposition methods (separable augmented Lagrangians by Philippe Mahey, Adam Ouorou, Jean-Pierre Dussault, co-authors)

$$
\left\{\begin{array}{lll}
\min _{x, y} & \sum_{j} f_{j}\left(x_{j}\right) & \\
\text { s.t. } & x_{j} \in S_{j} & \forall j \\
& g_{j}\left(x_{j}\right)+y_{j}=0 \quad \forall j \\
& \sum_{j} y_{j}=0 & \Longleftrightarrow\left(y_{1}, \ldots, y_{j}, \ldots\right) \in \mathbf{N}
\end{array}\right.
$$

Bonus track

- The family of proximal decomposition methods (separable augmented Lagrangians by Philippe Mahey, Adam Ouorou, Jean-Pierre Dussault, co-authors)

$$
\left\{\begin{array}{lll}
\min _{x, y} & \sum_{j} f_{j}\left(x_{j}\right) & \\
\text { s.t. } & x_{j} \in S_{j} & \forall j \\
& g_{j}\left(x_{j}\right)+y_{j}=0 \quad \forall j \\
& \sum_{j} y_{j}=0 & \Longleftrightarrow\left(y_{1}, \ldots, y_{j}, \ldots\right) \in \mathbf{N}
\end{array}\right.
$$

- The unified theory extends those methods to weakly convex problems + linear rate + stopping test + varying prox-parameter!

Bonus track

- The family of proximal decomposition methods (separable augmented Lagrangians by Philippe Mahey, Adam Ouorou, Jean-Pierre Dussault, co-authors)

$$
\left\{\begin{array}{lll}
\min _{x, y} & \sum_{j} f_{j}\left(x_{j}\right) & \\
\text { s.t. } & x_{j} \in S_{j} & \forall j \\
& g_{j}\left(x_{j}\right)+y_{j}=0 \quad \forall j \\
& \sum_{j} y_{j}=0 & \Longleftrightarrow\left(y_{1}, \ldots, y_{j}, \ldots\right) \in \mathbf{N}
\end{array}\right.
$$

- The unified theory extends those methods to weakly convex problems + linear rate + stopping test + varying prox-parameter!
- What about Decomposition-Coordination Methods ?
(separable augmented Lagrangians by Pierre Carpentier, Guy Cohen, Jean-Christophe Culioli, co-authors https://doi.org/10.1007/978-3-642-46823-0_6

