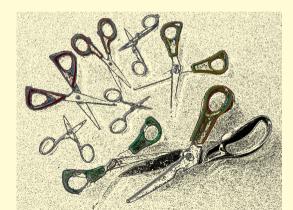
Revisitant les méthodes dérivées de la décomposition d'opérateurs



Claudia Sagastizábal IMECC-UNICAMP Brazil CEPID - Center for Mathematical Sciences Applied to Industry

> SMAI 2023, Pointe à Pître 23 Mai 2023

Motivation: energy sources in Brazil

2/55

Motivation: what is the value of water for the energy business?

Minimize immediate cost { rain Decision ok by emptying reservoirs { drought Deficit

Motivation: what is the value of water for the energy business?

Minimize immediate cost { rain Decision ok by emptying reservoirs { drought Deficit

•Keep water, more \$\$\$ { rain Excess water by thermal generation drought Decision ok

The value of water is an opportunity/substitution cost

Given by the value function of a linear stochastic program Depends on

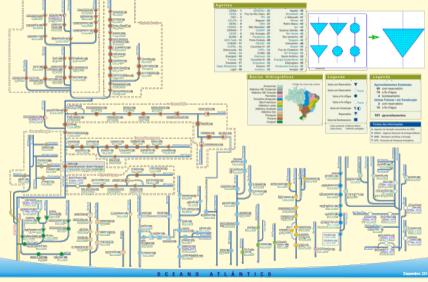
- the initial reservoir volumes
- the uncertainty representation
- how uncertainty is handled in the optimization problem
- how the optimization problem is solved
- environmental constraints

Drives guvernamental policies and business decisions of (+400) agents in the energy sector of Brazil

ONS Operativitational Diagrama Esquemático das Usinas Hidroelétricas do SIN

Usinas Hidroelótricas Despachadas pelo DNS na Otimização da Operação Eletroenergética do Sistema Interligado Nacional

Horizonte: 2013-2017

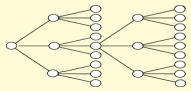


V

$$(x_{0}) = \begin{cases} \min_{u,x} & \mathbb{E}\left[\sum_{t=1}^{T}\sum_{i=1}^{NS}\sum_{j=1}^{T_{t}^{i}}c_{t}^{j}g_{t}^{i,j}\right] \\ & x_{t}^{i} + gh_{t}^{i} + spill_{t}^{i} = x_{t-1}^{i} + \gamma_{t}^{i}\xi_{t}^{j} - evap_{t}^{i} \\ & gh_{t}^{i} + \sum_{j \leq T_{t}^{i}}g_{t}^{i,j} + \sum_{\ell \in \mathscr{L}^{i}}(f_{t}^{\ell,i} - f_{t}^{i,\ell}) \geq dem_{t}^{i} - (1 - \gamma_{t}^{i})\xi_{t}^{i} \end{cases} (BAL) \\ & u^{\min} \leq u = (gh, spill, gt, f) \leq u^{\max} \\ & x_{t}^{i,\min} \leq x_{t}^{i} \leq x_{t}^{i,\max} \end{cases} (BOX)$$

$$v(x_{0}) = \begin{cases} \min_{u,x} \mathbb{E}\left[\sum_{t=1}^{T}\sum_{i=1}^{NS}\sum_{j=1}^{T_{t}^{i}}c_{t}^{j}g_{t}^{i,j}\right] \\ x_{t}^{i} + gh_{t}^{i} + spill_{t}^{i} = x_{t-1}^{i} + \gamma_{t}^{i}\xi_{t}^{i} - evap_{t}^{i} \\ gh_{t}^{i} + \sum_{j \leq T_{t}^{i}}g_{t}^{i,j} + \sum_{\ell \in \mathscr{L}^{i}}(f_{t}^{\ell,i} - f_{t}^{i,\ell}) \geq dem_{t}^{i} - (1 - \gamma_{t}^{i})\xi_{t}^{i} \end{cases} (BAL) \\ u^{\min} \leq u = (gh, spill, gt, f) \leq u^{\max} \\ x_{t}^{i,\min} \leq x_{t}^{i} \leq x_{t}^{i,\max} \end{cases} (BOX)$$

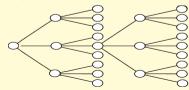
With 3 hydro conditions, {*normal*, *wet*, *dry*} for T = 4 months, there are 3^3 scenarios



$$v(x_{0}) = \begin{cases} \min_{u,x} \mathbb{E}\left[\sum_{t=1}^{T}\sum_{j=1}^{NS}\sum_{j=1}^{T_{t}^{i}}c_{t}^{j}g_{t}^{i,j}\right] \\ x_{t}^{i} + gh_{t}^{i} + spill_{t}^{i} = x_{t-1}^{i} + \gamma_{t}^{i}\xi_{t}^{j} - evap_{t}^{i} \\ gh_{t}^{i} + \sum_{j \leq T_{t}^{i}}g_{t}^{i,j} + \sum_{\ell \in \mathscr{L}^{i}}(f_{t}^{\ell,i} - f_{t}^{i,\ell}) \geq dem_{t}^{i} - (1 - \gamma_{t}^{i})\xi_{t}^{i} \end{cases}$$
(BAL)
$$u^{\min} \leq u = (gh, spill, gt, f) \leq u^{\max} \\ x_{t}^{i,\min} \leq x_{t}^{i} \leq x_{t}^{i,\max} \end{cases}$$
(BOX)

With 3 hydro conditions, {*normal*, *wet*, *dry*} for T = 4 months, there are 3^3 scenarios

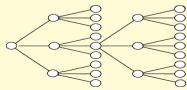
real problem considers 10 years (T = 120 months) it has 20^{119} scenarios!!!



$$\begin{split} & \underset{u,x}{\min} \quad \mathbb{E}\left[\sum_{t=1}^{T}\sum_{i=1}^{NS}\sum_{j=1}^{T_{t}^{i}}c_{t}^{j}g_{t}^{i,j}\right] \\ & \quad x_{t}^{i}+gh_{t}^{i}+spill_{t}^{i}=x_{t-1}^{i}+\gamma_{t}^{i}\boldsymbol{\xi}_{t}^{i}-evap_{t}^{i} \\ & \quad gh_{t}^{i}+\sum_{j\leq T_{t}^{i}}g_{t}^{i,j}+\sum_{\ell\in\mathscr{L}^{i}}(f_{t}^{\ell,i}-f_{t}^{i,\ell})\geq dem_{t}^{i}-(1-\gamma_{t}^{i})\boldsymbol{\xi}_{t}^{i} \\ & \quad u^{\min}\leq u=(gh,spill,gt,f)\leq u^{\max} \\ & \quad x_{t}^{i,\min}\leq x_{t}^{i}\leq x_{t}^{i,\max} \end{split}$$
(BOX)

With 3 hydro conditions, {*normal*, *wet*, *dry*} for T = 4 months, there are 3^3 scenarios

real problem considers 10 years (T = 120 months) it has 20^{119} scenarios!!!

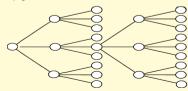


Future cost of water: piecewise linear function (parallel computation!)

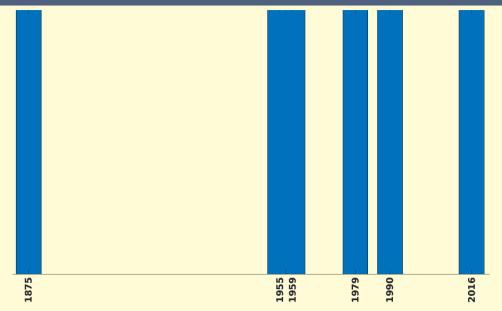
$$\begin{array}{l} \underset{u,x}{\underset{u,x}{\underset{w,x}{\underset{w,x}{\atop{}}}}} & \mathbb{E}\left[\sum_{t=1}^{T}\sum_{i=1}^{NS}\sum_{j=1}^{T_{t}^{i}}c_{t}^{j}g_{t}^{i,j}\right] \\ & x_{t}^{i} + gh_{t}^{i} + spill_{t}^{i} = x_{t-1}^{i} + \gamma_{t}^{i}\xi_{t}^{i} - evap_{t}^{i} \\ & gh_{t}^{i} + \sum_{j \leq T_{t}^{i}}g_{t}^{i,j} + \sum_{\ell \in \mathscr{L}^{i}}(f_{t}^{\ell,i} - f_{t}^{i,\ell}) \geq dem_{t}^{i} - (1 - \gamma_{t}^{i})\xi_{t}^{i} \\ & u^{\min} \leq u = (gh, spill, gt, f) \leq u^{\max} \\ & x_{t}^{i,\min} \leq x_{t}^{i} \leq x_{t}^{i,\max} \end{array} \tag{BOX}$$

With 3 hydro conditions, {*normal*, *wet*, *dry*} for T = 4 months, there are 3^3 scenarios

real problem considers 10 years (T = 120 months) it has 20^{119} scenarios!!!



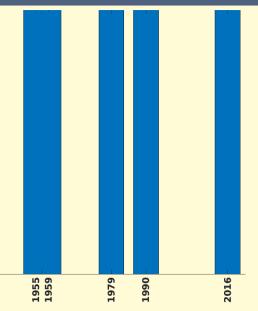
The Triangle of Splitting Methods

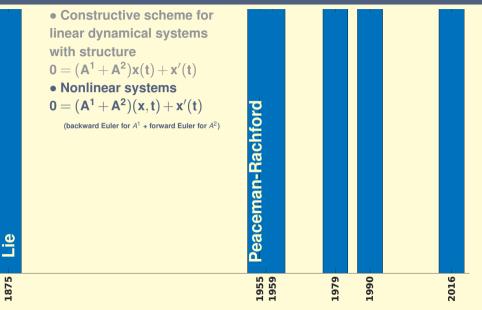


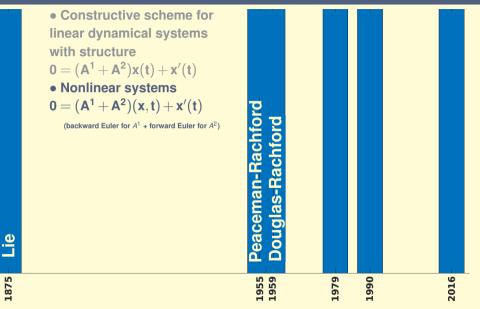
Lie

1875

• Constructive scheme for linear dynamical systems with structure $0 = (A^1 + A^2)x(t) + x'(t)$

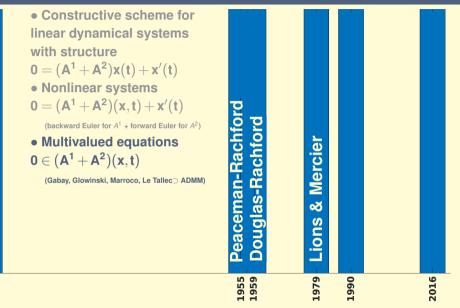


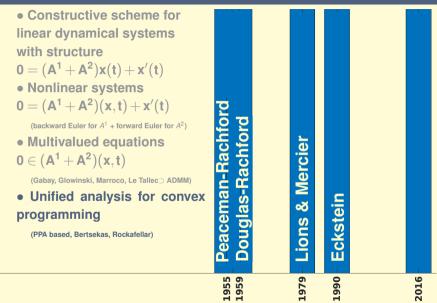


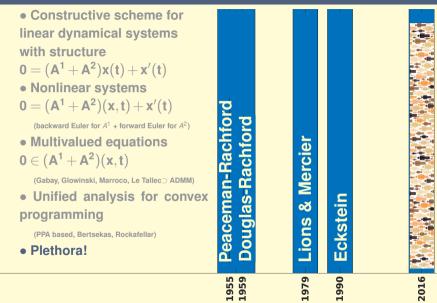


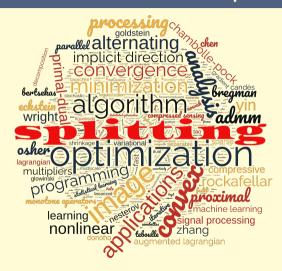
Lie

1875









 $0 \in A(x)$ for $A = A^1 + A^2$

 $0 \in A(x)$ for $A = A^1 + A^2$ akin to Newton's method

 $0=\nabla f(x)$

 $0 \in A(x)$ for $A = A^1 + A^2$ akin to Newton's method

 $0=\nabla f(x)$

Can we exploit further knowing $A = \partial f$?

Un petit détour...

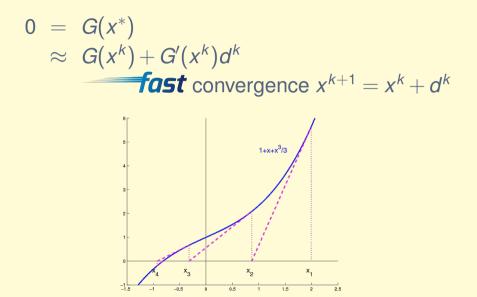
source: Sarah Dry's wordpress

Newton's method for nonlinear systems

$$0 = G(x^*)$$

$$\approx G(x^k) + G'(x^k)d^k$$
fast convergence $x^{k+1} = x^k + d^k$

Newton's method for nonlinear systems



18/55

Newton method is **accurate**

$$G(x) = 1 + x + x^3/3$$

1	2.000000000000000	0
2	<mark>0</mark> .8666666666666666	1
3	- <mark>0</mark> .32323745064862	1
4	- <mark>0</mark> .92578663808031	1
5	- <mark>0.8</mark> 2332584261905	2
6	- <mark>0.8177</mark> 4699537697	5
7	-0.81773167400186	9
8	-0.81773167388682	15
Newton		

$$0 = G(x^*)$$

$$\approx G(x^k) + G'(x^k)d^k$$
fast convergence

$$0 = G(x^*)$$

$$\approx G(x^k) + G'(x^k)d^k$$
fast convergence

In optimization

$$G(x) = \nabla f(x)$$

for an objective f

$$0 = \nabla f(x^*)$$

$$\approx \nabla f(x^k) + \nabla^2 f(x^k) d^k$$

fast convergence

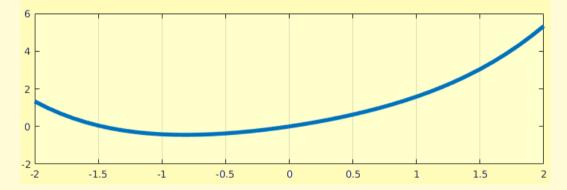
$$x^{k+1} = x^k - [\nabla^2 f(x^k)]^{-1} \nabla f(x^k)$$

for an objective f

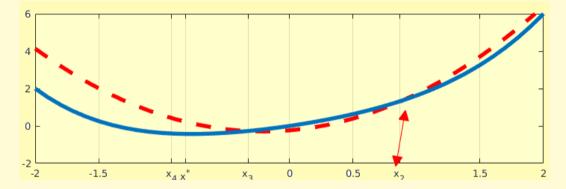
$$0 = \nabla f(x^{*})$$

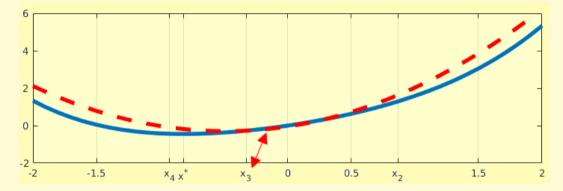
$$\approx \nabla f(x^{k}) + \nabla^{2} f(x^{k}) d^{k}$$
fast convergence
$$x^{k+1} = x^{k} - [\nabla^{2} f(x^{k})]^{-1} \nabla f(x^{k})$$
for an objective f
$$\min f \approx \min f - \mod d$$

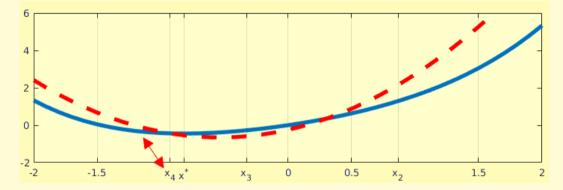
$$\min f(x^{k}) + \langle \nabla f(x^{k}), d \rangle + \frac{1}{2} \langle \nabla^{2} f(x^{k}) d, d \rangle$$

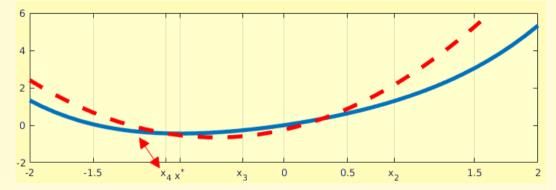


$$G(x) = 1 + x + x^3/3 \implies f(x) = x + x^2/2 + x^4/12$$



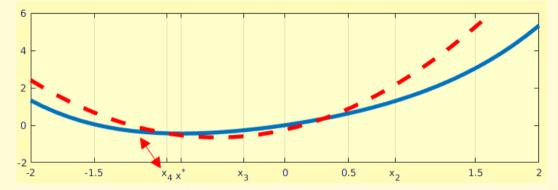






Can we avoid computing the Hessian matrix?

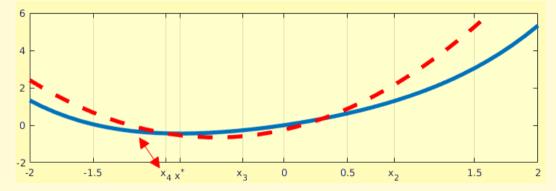
Newton iterates for optimization



Can we avoid computing the Hessian matrix? YES!

$$\min_{d} f(x^{k}) + \left\langle \nabla f(x^{k}), d \right\rangle + \frac{1}{2} \left\langle M^{k} d, d \right\rangle$$

Newton iterates for optimization

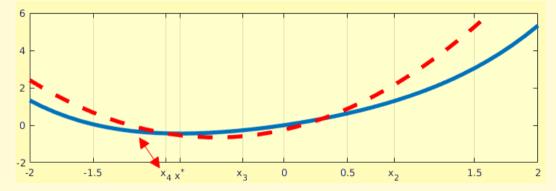


Can we avoid computing the Hessian matrix? YES!

$$\min_{d} f(x^{k}) + \left\langle \nabla f(x^{k}), d \right\rangle + \frac{1}{2} \left\langle M^{k} d, d \right\rangle$$

quasi-Newton matrix

Newton iterates for optimization



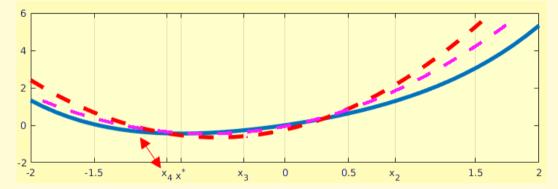
Can we avoid computing the Hessian matrix? YES!

$$\min_{d} f(x^{k}) + \left\langle \nabla f(x^{k}), d \right\rangle + \frac{1}{2} \left\langle M^{k} d, d \right\rangle$$

quasi-Newton matrix

 $0 = \nabla f(x^k) + M^k d^k$

quasi-Newton iterates for optimization



Eventually, the true Hessian curvature is estimated **only** along the generated directions

quasi-Newton methods are accurate too!

1	2.000000000000000	0			
2	1.500000000000000	0			
3	0.61224489795918	1			
4	- <mark>0</mark> .16202797536640	1			
5	- <mark>0</mark> .92209500449059	1			
6	- <mark>0</mark> .78540447895661	1			
7	- <mark>0.81</mark> 609056319699	3			
8	-0.81775774021392	5			
9	-0.81773165292101	8			
0	-0.81773167388656	13			
1	-0.81773167388682	15			
uasi-Newton					

1	2.00000000000000	0
2	0.86666666666666	1
3	- <mark>0</mark> .32323745064862	1
4	- <mark>0</mark> .92578663808031	1
5	- <mark>0.8</mark> 2332584261905	2
6	- <mark>0.8177</mark> 4699537697	5
7	-0.81773167400186	9
8	-0.817731673886 <mark>82</mark>	15

Newton

quasi-Newton methods are accurate too!

1	2.000000000000000	0	
2	1.500000000000000	0	
3	0.61224489795918	1	
4	- <mark>0</mark> .16202797536640	1	
5	- <mark>0</mark> .92209500449059	1	
6	- <mark>0</mark> .78540447895661	1	
7	- <mark>0.81</mark> 609056319699	3	
8	- <mark>0.8177</mark> 5774021392	5	
9	-0.81773165292101	8	
0	-0.81773167388656	13	
1	-0.81773167388682	15	
lu	asi-Newton		

1	2.00000000000000	0
2	0.86666666666666	1
3	- <mark>0</mark> .32323745064862	1
4	- <mark>0</mark> .92578663808031	1
5	- <mark>0.8</mark> 2332584261905	2
6	- <mark>0.8177</mark> 4699537697	5
7	-0.81773167400186	9
8	-0.81773167388682	15

Newton

... fin du détour

Applied to optimality conditions of $\min_x f^1(x) + f^2(Mx)$

 $0 \in \partial f^1(x) + M^{\scriptscriptstyle \top} \partial f^2(Mx)$

 $\begin{cases} k\text{th subproblem on }\partial t^1 \\ k\text{th subproblem on }\partial t^2 \end{cases}$

Applied to optimality conditions of $\min_x f^1(x) + f^2(Mx)$

or its dual: $\max_w - f^{1*}(-M^{\top}w) - f^{2*}(w)$ $0 \in \partial f^1(x) + M^{\scriptscriptstyle \top} \partial f^2(Mx)$

 $\begin{cases} k\text{th subproblem on } \partial f^1 \\ k\text{th subproblem on } \partial f^2 \end{cases}$

 $0 \in M \partial f^{1*}(-M^{\top}w) + \partial f^{2*}(w)$ $\begin{cases} k \text{th subproblem on } \partial f^{1*} \\ k \text{th subproblem on } \partial f^{2*} \end{cases}$

Applied to optimality conditions of $\min_x f^1(x) + f^2(Mx)$

or its dual:

$$\max_{w} - f^{1*}(-M^{\top}w) - f^{2*}(w)$$

 $0 \in \partial f^1(x) + M^{\scriptscriptstyle \top} \partial f^2(Mx)$

 $\begin{cases} k\text{th subproblem on } \partial f^1 \\ k\text{th subproblem on } \partial f^2 \end{cases}$

 $0 \in M \partial f^{1*}(-M^{\top}w) + \partial f^{2*}(w)$ $\begin{cases} k \text{th subproblem on } \partial f^{1*} \\ k \text{th subproblem on } \partial f^{2*} \end{cases}$

Considering
$$x = (x^1, x^2)$$

$$\min_{x^1, x^2} f^1(x^1) + f^2(x^2) \quad \text{s.t.} \quad A^1 x^1 + A^2 x^2 = 0$$

Applied to optimality conditions of $\min_x f^1(x) + f^2(Mx)$

or its dual:

$$\max_{w} - f^{1*}(-M^{T}w) - f^{2*}(w)$$

 $0 \in \partial f^1(x) + M^{\scriptscriptstyle \top} \partial f^2(Mx)$

 $\begin{cases} k \text{th subproblem on } \partial f^1 \\ k \text{th subproblem on } \partial f^2 \end{cases}$

 $0 \in M\partial f^{1*}(-M^{\top}w) + \partial f^{2*}(w)$ $\begin{cases} k \text{th subproblem on } \partial f^{1*} \\ k \text{th subproblem on } \partial f^{2*} \end{cases}$

Considering $x = (x^1, x^2)$ $\min_{x^1, x^2} f^1(x^1) + f^2(x^2) \quad \text{s.t.} \quad A^1 x^1 + A^2 x^2 = 0$

write Lagrangian to make *k*th-subproblems easy

Rewriting often results from efforts to make *k*th-subproblems **easy**, for

$$\min_{x^1,x^2} f^1(x^1) + f^2(x^2) \quad \text{s.t.} \quad A^1 x^1 + A^2 x^2 = 0$$

Rewriting often results from efforts to make *k*th-subproblems easy, for $\begin{array}{l} \min_{x^{1},x^{2}} f^{1}(x^{1}) + f^{2}(x^{2}) \quad \text{s.t.} \quad A^{1}x^{1} + A^{2}x^{2} = 0 \\
\text{Lagrangian} \qquad L(x,w) = \sum_{s=1}^{2} \left(f^{s}(x^{s}) + \left\langle A^{s^{\top}}w, x^{s} \right\rangle \right) \\
= \sum_{s=1}^{2} L^{s}(x^{s},w)
\end{array}$

Rewriting often results from efforts to make *k*th-subproblems easy, for $\begin{array}{l} \min_{x^{1},x^{2}} f^{1}(x^{1}) + f^{2}(x^{2}) \quad \text{s.t.} \quad A^{1}x^{1} + A^{2}x^{2} = 0 \\
\text{Lagrangian} \qquad L(x,w) = \sum_{s=1}^{2} \left(f^{s}(x^{s}) + \left\langle A^{s\top}w, x^{s} \right\rangle \right) \\
= \sum_{s=1}^{2} L^{s}(x^{s},w)$

Lagrangian relaxation approach

Primal step Having dual iterate w^k , solve primal subproblems

$$\min_{x} L(x, w^k) = \sum_{s} \min_{\mathbf{x}^s} L(\mathbf{x}^s, w^k)$$

Rewriting often involves constraint with a simple subspace

Compressed sensing

m

$$\lim_{x^1} \frac{1}{2} \|RTx^1 - a\|_2^2 + \lambda \|A^1x^1\|_1$$

Compressed sensing

$$\begin{cases} \min_{x^1, x^2} & \frac{1}{2} \| RTx^1 - a \|_2^2 + \lambda \| x^2 \|_1 \\ \text{s.t.} & A^1 x^1 - x^2 = 0 \end{cases}$$

Compressed sensing

$$\begin{cases} \min_{x^{1},x^{2}} & \frac{1}{2} \| RTx^{1} - a \|_{2}^{2} + \lambda \| x^{2} \|_{1} \\ \text{s.t.} & A^{1}x^{1} - x^{2} = 0 \\ x \in N := \{ (x^{1}, x^{2}) : \begin{bmatrix} A^{1} \\ -I \end{bmatrix} \begin{pmatrix} x^{1} \\ x^{2} \end{pmatrix} = 0 \} \end{cases}$$

Rewriting often involves constraint with a simple subspace

Compressed sensing

$$\min_{x^{1},x^{2}} \frac{\frac{1}{2}}{\|RTx^{1}-a\|_{2}^{2}+\lambda\|} \frac{x^{2}}{x^{2}} \|_{1}$$

s.t.
$$A^{1}x^{1}-x^{2}=0 x \in N := \{(x^{1},x^{2}): \begin{bmatrix}A^{1}\\-I\end{bmatrix} \begin{pmatrix}x^{1}\\x^{2}\end{pmatrix}=0\}$$

Progressive hedging

$$\begin{cases} \min_{x} \mathbb{E}[f^{s}(x)] \\ \text{s.t.} \quad x \in X^{s} \quad s \in S \\ \checkmark \checkmark \checkmark \checkmark \checkmark \end{cases}$$

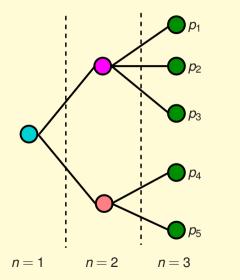
Rewriting often involves constraint with a simple subspace

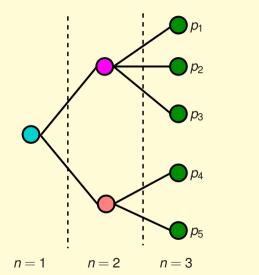
Compressed sensing

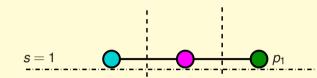
$$\min_{x^{1},x^{2}} \quad \frac{1}{2} \| RTx^{1} - a \|_{2}^{2} + \lambda \| x^{2} \|_{1}$$
s.t.
$$A^{1}x^{1} - x^{2} = 0$$

$$x \in N := \{ (x^{1}, x^{2}) : \begin{bmatrix} A^{1} \\ -I \end{bmatrix} \begin{pmatrix} x^{1} \\ x^{2} \end{bmatrix} = 0 \}$$

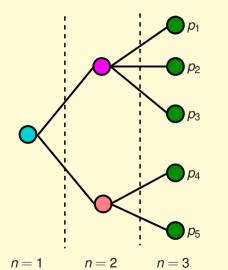
Progressive hedging

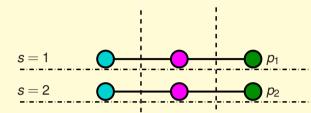






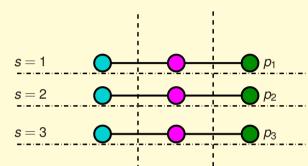
n=1 n=2 n=3



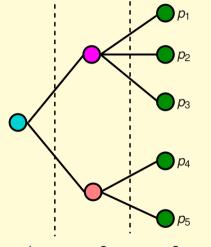


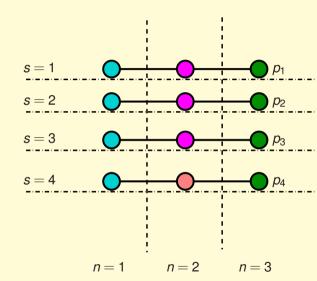
$$n=1$$
 $n=2$ $n=3$

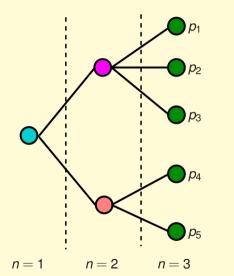


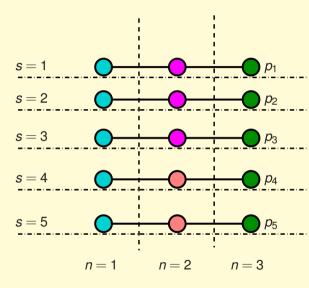


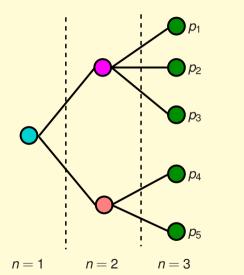
$$n=1$$
 $n=2$ $n=3$

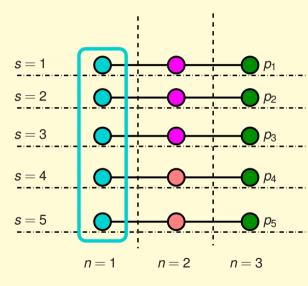


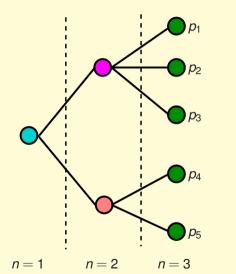


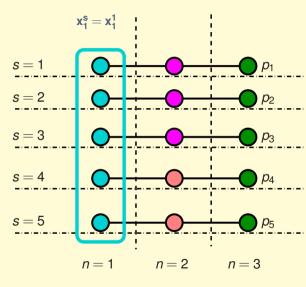


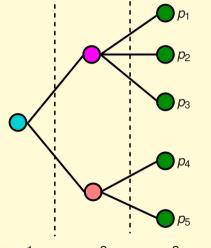


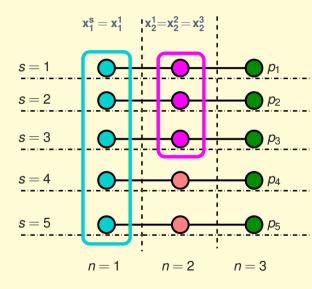


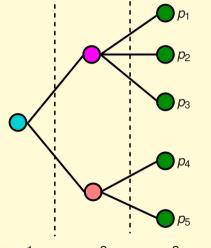


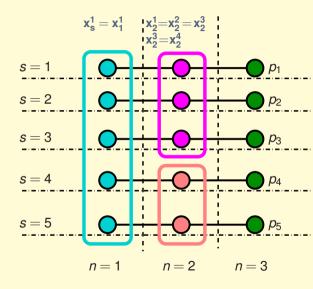


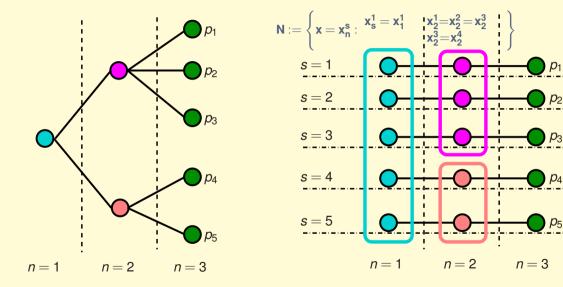












Rewriting often results from efforts to make *k*th-subproblems **easy**, for $\min_{(x^1, x^2, \dots, x^s, \dots)} \sum_{s} f^s(x^s) \quad \text{s.t.} \quad \sum_{s} A^s x^s = 0$

Lagrangian $L_{t_0}(x, w) = \sum_{s} (f^s(x^s) + \langle A^{s \top} w, x^s \rangle) = \sum_{s} L^s(x^s, w)$

Lagrangian relaxation approach

Primal step Having dual iterate w^k , solve primal subproblems

$$\min_{x} L(x, w^k) = \sum_{s} \min_{x^s} L(x^s, w^k)$$

Rewriting often results from efforts to make kth-subproblems easy, for

$$\min_{x^1, x^2, \dots, x^s, \dots} \sum_s f^s(x^s) \quad \text{s.t.} \quad \sum_s A^s x^s = 0$$

Augmented Lagrangian

$$L_{t_0}(x,w) = \sum_{s} \left(f^s(x^s) + \langle A^{s \top}w, x^s \rangle \right) + \frac{t_0}{2} \|\sum_{s} A^s x^s\|^2 = \sum_{s} L^s(x^s,w) + \frac{t_0}{2} \|\sum_{s} A^s x^s\|^2$$

Augmented Lagrangian relaxation approach (1st try, naïve)

Primal step Having dual iterate w^k , solve primal subproblems

$$\min_{x} L_{t_0}(x, w^k) \neq \sum_{s} \min_{\mathbf{x}^s} L_{t_0}^s(\mathbf{x}^s, w^k)$$

Rewriting often results from efforts to make kth-subproblems easy, for

$$\min_{x^1, x^2, \dots, x^s, \dots} \sum_s f^s(x^s) \quad \text{s.t.} \quad \sum_s A^s x^s = 0$$

Augmented Lagrangian is not separable

$$L_{t_0}(x,w) = \sum_{s} \left(f^s(x^s) + \langle A^{s \top}w, x^s \rangle \right) + \frac{t_0}{2} \|\sum_{s} A^s x^s\|^2 = \sum_{s} L^s(x^s,w) + \frac{t_0}{2} \|\sum_{s} A^s x^s\|^2$$

$$\approx \mathbb{L}^k(x,w) \text{separable}$$

Augmented Lagrangian relaxation approach

Primal step Having dual iterate w^k , solve approximate primal subproblems

$$\min_{x} \mathbb{L}^{k}(x, w^{k}) = \sum_{s} \min_{\mathbf{x}^{s}} L_{t_{0}}\left((\mathbf{x}^{s}, x^{k, -s}), w^{k}\right)$$

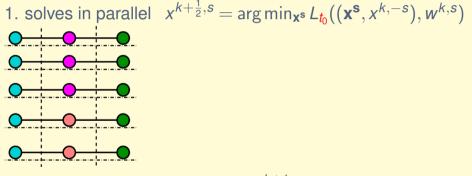
Project primal output onto N

Given $x^k = (x^{k,s} : s \in S) \in \mathbb{N}$ and $w^k = (w^{k,s} : s \in S) \in \mathbb{N}^{\perp}$ and a fixed prox-parameter $t_0 > 0$

Given $x^k = (x^{k,s} : s \in S) \in \mathbb{N}$ and $w^k = (w^{k,s} : s \in S) \in \mathbb{N}^{\perp}$ and a fixed prox-parameter $t_0 > 0$

1. solves in parallel $x^{k+\frac{1}{2},s} = \arg \min_{\mathbf{x}^s} L_{t_0}((\mathbf{x}^s, x^{k,-s}), w^{k,s})$

Given $x^k = (x^{k,s} : s \in S) \in \mathbb{N}$ and $w^k = (w^{k,s} : s \in S) \in \mathbb{N}^{\perp}$ and a fixed prox-parameter $t_0 > 0$



2. projects onto **N** to define x^{k+1}

Given $x^k = (x^{k,s} : s \in S) \in \mathbb{N}$ and $w^k = (w^{k,s} : s \in S) \in \mathbb{N}^{\perp}$ and a fixed prox-parameter $t_0 > 0$

1. solves in parallel $x^{k+\frac{1}{2},s} = \arg\min_{\mathbf{x}^s} L_t((\mathbf{x}^s, x^{k,-s}), w^{k,s})$ **N** to define x^{k+1} 2. projects onto

3. computes

 $w^{k+1} = w^k + t_0(x^{k+\frac{1}{2}} - x^k)$

The progressive hedging algorithm (RW91)

Given $x^k = (x^{k,s} : s \in S) \in \mathbb{N}$ and $w^k = (w^{k,s} : s \in S) \in \mathbb{N}^{\perp}$ and a fixed prox-parameter $t_0 > 0$

1. solves in parallel $x^{k+\frac{1}{2},s} = \arg \min_{\mathbf{x}^s} L_{t_0}((\mathbf{x}^s, x^{k,-s}), w^{k,s})$ **BUT** convergence relies on DR for OC cannot vary t_0 , it remains fixed!

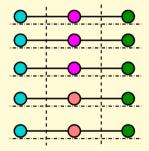
2. projects onto
 3. computes

N to define x^{k+1} $w^{k+1} = w^k + \frac{t_0}{x^{k+\frac{1}{2}} - x^k}$

The progressive hedging algorithm (RW91)

Given $x^k = (x^{k,s} : s \in S) \in \mathbb{N}$ and $w^k = (w^{k,s} : s \in S) \in \mathbb{N}^{\perp}$ and a fixed prox-parameter $t_0 > 0$

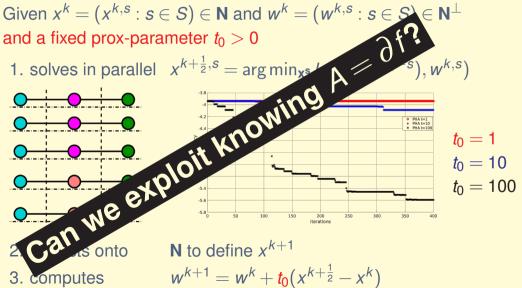
1. solves in parallel $x^{k+\frac{1}{2},s} = \arg \min_{\mathbf{x}^s} L_{t_0}((\mathbf{x}^s, x^{k,-s}), w^{k,s})$



2. projects onto
 3. computes

N to define x^{k+1} $w^{k+1} = w^k + t_0(x^{k+\frac{1}{2}} - x^k)$

The progressive hedging algorithm (RW91)



1. Find primal intermediate points in parallel

$$x^{k+rac{1}{2},s} = \operatorname{arg\,min}_{\mathbf{x}^{\mathbf{s}}} L_{\mathbf{f}_{\mathbf{0}}}((\mathbf{x}^{\mathbf{s}}, x^{k,-s}), w^{k,s})$$

- 2. Project primal iterate onto ${\bf N}$
- 3. Update dual iterate

1. Find primal intermediate points in parallel

$$\begin{array}{lll} x^{k+\frac{1}{2},s} &=& \arg\min_{x^s} L_{t_0}((x^s,x^{k,-s}),w^{k,s}) \\ x^{k+\frac{1}{2},s} &=& \Pr\operatorname{ox}_{\mathbb{L}^{k,s}}^{t_0}(\cdot,w^{k,s})(x^{k,s}) \end{array}$$

- 2. Project primal iterate onto ${\bf N}$
- 3. Update dual iterate

1. Find primal intermediate points in parallel

$$egin{array}{rcl} x^{k+rac{1}{2},s} &=& rgmin_{x^s} L_{t_0}((x^s,x^{k,-s}),w^{k,s}) \ x^{k+rac{1}{2},s} &=& ext{prox}_{\mathbb{L}^{k,s}}^{t_0}(\cdot,w^{k,s})(x^{k,s}) \end{array}$$

- 2. Project primal iterate onto ${\bf N}$
- 3. Update dual iterate

 \implies let's interpret primal update in terms of the dual problem

1. Find primal intermediate points in parallel

$$egin{array}{rcl} x^{k+rac{1}{2},s} &=& rgmin_{x^s} L_{t_0}((x^s,x^{k,-s}),w^{k,s}) \ x^{k+rac{1}{2},s} &=& ext{prox}_{\mathbb{L}^{k,s}}^{t_0}(\cdot,w^{k,s})(x^{k,s}) \end{array}$$

- 2. Project primal iterate onto ${\bf N}$
- 3. Update dual iterate

 \implies let's interpret primal update in terms of the dual problem

DUAL solves iteratively
$$\begin{cases} \min & H(w) = \sum_{s} H^{s}(w^{s}) \\ \text{s.t.} & w \in \mathbf{N}^{\perp} \end{cases}$$

by computing proximal points for individual models $\mathbb{H}^{k,s}$

1. Find dual intermediate points in parallel

$$w^{k+rac{1}{2},s}$$
 = $ext{prox}_{\mathbb{H}^{k,s}}^{rac{1}{t_0}}(w^{k,s})$

- 2. Project **dual** iterate onto N^{\perp}
- 3. Update primal iterate

1. Find **dual** intermediate points in parallel

$$w^{k+rac{1}{2},s}$$
 = $ext{prox}_{\mathbb{H}^{k,s}}^{rac{1}{t_0}}(w^{k,s})$

- 2. Project **dual** iterate onto \mathbf{N}^{\perp}
- 3. Update primal iterate

 \implies by computing proximal points for individual models $\mathbb{H}^{k,s}$ in the dual problem we can now compare the dual models $\mathbb{H}^{k,s}$ with the dual functions H^s

1. Find **dual** intermediate points in parallel

$$w^{k+rac{1}{2},s}$$
 = $ext{prox}_{\mathbb{H}^{k,s}}^{rac{1}{t_0}}(w^{k,s})$

- 2. Project **dual** iterate onto \mathbf{N}^{\perp}
- 3. Update primal iterate

 \implies by computing proximal points for individual models $\mathbb{H}^{k,s}$ in the dual problem we can now compare the dual models $\mathbb{H}^{k,s}$ with the dual functions H^s

- Bad fit: decrease t₀
- Good fit: ok! t₀ can increase

1. Find dual intermediate points in parallel

$$w^{k+rac{1}{2},s}$$
 = $ext{prox}_{\mathbb{H}^{k,s}}^{rac{1}{t_0}}(w^{k,s})$

- 2. Project **dual** iterate onto \mathbf{N}^{\perp}
- 3. Update primal iterate

 \implies by computing proximal points for individual models $\mathbb{H}^{k,s}$ in the dual problem we can now compare the dual models $\mathbb{H}^{k,s}$ with the dual functions H^s

- Bad fit: decrease t₀
- Good fit: ok! t₀ can increase

Bad/good fit dichotomy \equiv null/serious steps in bundle methods

Goodies of Bundle PH - convergence

\implies allows to increase/decrease t_k

fits model-based descent theory (Atenas, Sagastizábal, Silva, Solodov, SiOPT 2023), extended to handle projective step(Atenas, Sagastizábal, JoCA 2023)

Goodies of Bundle PH - convergence

\implies allows to increase/decrease t_k

fits model-based descent theory (Atenas, Sagastizábal, Silva, Solodov, SiOPT 2023), extended to handle projective step(Atenas, Sagastizábal, JoCA 2023)

If $t_{k+1} \in [t_{\min}, t_{\max}]$

Convergence for infinite subsequence of serious steps

-Global convergence with linear rate if error bound

Convergence for infinite tail of null steps

- -Last generated serious iterate was optimal
- -The null tail converges to last serious

-no rate

Goodies of Bundle PH - convergence

\implies allows to increase/decrease t_k

fits model-based descent theory (Atenas, Sagastizábal, Silva, Solodov, SiOPT 2023), extended to handle projective step(Atenas, Sagastizábal, JoCA 2023)

If $t_{k+1} \in [t_{\min}, t_{\max}]$

Convergence for infinite subsequence of serious steps

-Global convergence with linear rate if error bound

Convergence for infinite tail of null steps

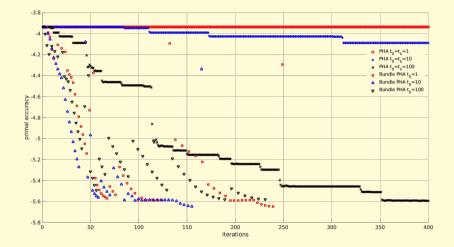
-Last generated serious iterate was optimal

-The null tail converges to last serious

-no rate

 \implies implementable stopping test!

Goodies of Bundle PH - Performance



To know more: related references

$$\begin{cases} \min_{x} & \sum_{j} f_{j}(x_{j}) \\ \text{s.t.} & x_{j} \in S_{j} & \forall j \\ & & \\ & & \sum_{j} g_{j}(x_{j}) = 0 \end{cases}$$

$$\begin{cases} \min_{x,y} & \sum_{j} f_j(x_j) \\ \text{s.t.} & x_j \in S_j & \forall j \\ & g_j(x_j) + y_j = 0 & \forall j \\ & \sum_{j} y_j = 0 \end{cases}$$

$$\begin{cases} \min_{x,y} & \sum_{j} f_{j}(x_{j}) \\ \text{s.t.} & x_{j} \in S_{j} & \forall j \\ & g_{j}(x_{j}) + y_{j} = 0 & \forall j \\ & \sum_{j} y_{j} = 0 & \iff (y_{1}, \dots, y_{j}, \dots) \in \mathbb{N} \end{cases}$$

The family of proximal decomposition methods (separable augmented Lagrangians by Philippe Mahey, Adam Ouorou, Jean-Pierre Dussault, co-authors)

$$\begin{cases} \min_{x,y} & \sum_{j} f_j(x_j) \\ \text{s.t.} & x_j \in S_j & \forall j \\ & g_j(x_j) + y_j = 0 & \forall j \\ & \sum_{j} y_j = 0 & \iff (y_1, \dots, y_j, \dots) \in \mathbb{N} \end{cases}$$

The unified theory extends those methods to weakly convex problems + linear rate + stopping test + varying prox-parameter!

$$\begin{cases} \min_{x,y} & \sum_{j} f_j(x_j) \\ \text{s.t.} & x_j \in S_j & \forall j \\ & g_j(x_j) + y_j = 0 & \forall j \\ & \sum_{j} y_j = 0 & \iff (y_1, \dots, y_j, \dots) \in \mathbb{N} \end{cases}$$

- The unified theory extends those methods to weakly convex problems + linear rate + stopping test + varying prox-parameter!
- What about Decomposition-Coordination Methods ? (separable augmented Lagrangians by Pierre Carpentier, Guy Cohen, Jean-Christophe Culioli, co-authors https://doi.org/10.1007/978-3-642-46823-0_6