
Revisitant
les méthodes dérivées de la
décomposition d’opérateurs

Claudia Sagastizábal
IMECC-UNICAMP Brazil

SMAI 2023, Pointe à Pı̂tre
23 Mai 2023

1 / 55



Motivation: energy sources in Brazil

2 / 55



Motivation: what is the value of water for the energy business?

Decision Consequences
today in the future

•Minimize immediate cost
by emptying reservoirs

{
rain
drought

Decision ok
Deficit

or
•Keep water, more $$$
by thermal generation

{
rain
drought

Excess water
Decision ok

3 / 55



Motivation: what is the value of water for the energy business?

Decision Consequences
today in the future

•Minimize immediate cost
by emptying reservoirs

{
rain
drought

Decision ok
Deficit

or
•Keep water, more $$$
by thermal generation

{
rain
drought

Excess water
Decision ok

3 / 55



The value of water is an opportunity/substitution cost

Given by the value function of a linear stochastic program
Depends on
▶ the initial reservoir volumes
▶ the uncertainty representation
▶ how uncertainty is handled in the optimization problem
▶ how the optimization problem is solved
▶ environmental constraints

Drives guvernamental policies and business decisions of (+400)
agents in the energy sector of Brazil

4 / 55



5 / 55



Future cost of water: piecewise linear function

v(x0) =



min
u,x

E [
T

∑
t=1

NS

∑
i=1

T i
t

∑
j=1

c j
t g

i,j
t ]

x i
t +ghi

t + spill it = x i
t−1 + γ i

t ξ
i
t −evapi

t (BAL)

ghi
t + ∑

j≤T i
t

g i,j
t + ∑

ℓ∈L i

(f ℓ,it − f i,ℓ
t )≥ demi

t − (1− γ
i
t )ξ

i
t (DEM)

umin ≤ u = (gh,spill,gt, f )≤ umax

x i,min
t ≤ x i

t ≤ x i,max
t (BOX)

With 3 hydro conditions, {normal,wet,dry} for T = 4 months, there are 33 scenarios

real problem considers 10 years
(T = 120 months)
it has 20119 scenarios!!!

6 / 55



Future cost of water: piecewise linear function

v(x0) =



min
u,x

E [
T

∑
t=1

NS

∑
i=1

T i
t

∑
j=1

c j
t g

i,j
t ]

x i
t +ghi

t + spill it = x i
t−1 + γ i

t ξ
i
t −evapi

t (BAL)

ghi
t + ∑

j≤T i
t

g i,j
t + ∑

ℓ∈L i

(f ℓ,it − f i,ℓ
t )≥ demi

t − (1− γ
i
t )ξ

i
t (DEM)

umin ≤ u = (gh,spill,gt, f )≤ umax

x i,min
t ≤ x i

t ≤ x i,max
t (BOX)

With 3 hydro conditions, {normal,wet,dry} for T = 4 months, there are 33 scenarios

real problem considers 10 years
(T = 120 months)
it has 20119 scenarios!!!

6 / 55



Future cost of water: piecewise linear function

v(x0) =



min
u,x

E [
T

∑
t=1

NS

∑
i=1

T i
t

∑
j=1

c j
t g

i,j
t ]

x i
t +ghi

t + spill it = x i
t−1 + γ i

t ξ
i
t −evapi

t (BAL)

ghi
t + ∑

j≤T i
t

g i,j
t + ∑

ℓ∈L i

(f ℓ,it − f i,ℓ
t )≥ demi

t − (1− γ
i
t )ξ

i
t (DEM)

umin ≤ u = (gh,spill,gt, f )≤ umax

x i,min
t ≤ x i

t ≤ x i,max
t (BOX)

With 3 hydro conditions, {normal,wet,dry} for T = 4 months, there are 33 scenarios

real problem considers 10 years
(T = 120 months)
it has 20119 scenarios!!!

6 / 55



Future cost of water: piecewise linear function

v(x0) =



min
u,x

E [
T

∑
t=1

NS

∑
i=1

T i
t

∑
j=1

c j
t g

i,j
t ]

x i
t +ghi

t + spill it = x i
t−1 + γ i

t ξ
i
t −evapi

t (BAL)

ghi
t + ∑

j≤T i
t

g i,j
t + ∑

ℓ∈L i

(f ℓ,it − f i,ℓ
t )≥ demi

t − (1− γ
i
t )ξ

i
t (DEM)

umin ≤ u = (gh,spill,gt, f )≤ umax

x i,min
t ≤ x i

t ≤ x i,max
t (BOX)

With 3 hydro conditions, {normal,wet,dry} for T = 4 months, there are 33 scenarios

real problem considers 10 years
(T = 120 months)
it has 20119 scenarios!!!

6 / 55



Future cost of water: piecewise linear function (parallel computation!)

v(x0) =



min
u,x

E [
T

∑
t=1

NS

∑
i=1

T i
t

∑
j=1

c j
t g

i,j
t ]

x i
t +ghi

t + spill it = x i
t−1 + γ i

t ξ
i
t −evapi

t (BAL)

ghi
t + ∑

j≤T i
t

g i,j
t + ∑

ℓ∈L i

(f ℓ,it − f i,ℓ
t )≥ demi

t − (1− γ
i
t )ξ

i
t (DEM)

umin ≤ u = (gh,spill,gt, f )≤ umax

x i,min
t ≤ x i

t ≤ x i,max
t (BOX)

With 3 hydro conditions, {normal,wet,dry} for T = 4 months, there are 33 scenarios

real problem considers 10 years
(T = 120 months)
it has 20119 scenarios!!!

7 / 55



The Triangle of Splitting Methods

PD
E

sc
ie

nt
ifi

c
co

m
pu

tin
g

Inform
ation

sciences

Optimization
8 / 55



Splitting Timeline - some milestones

9 / 55



Splitting Timeline - some milestones
• Constructive scheme for
linear dynamical systems
with structure
0 = (A1 +A2)x(t)+x′(t) •
Nonlinear systems
0 = (A1 +A2)(x, t)+x′(t)

(backward Euler for A1 + forward Euler for A2)

• Multivalued equations
0 ∈ (A1 +A2)(x, t)

(Gabay, Glowinski, Marroco, Le Tallec⊃ ADMM)

• Unified analysis for convex
programming

(PPA applied to splitting operator

• Plethora!

10 / 55



Splitting Timeline - some milestones
• Constructive scheme for
linear dynamical systems
with structure
0 = (A1 +A2)x(t)+x′(t)
• Nonlinear systems
0 = (A1 +A2)(x, t)+x′(t)

(backward Euler for A1 + forward Euler for A2)

• Multivalued equations
0 ∈ (A1 +A2)(x, t)

(Gabay, Glowinski, Marroco, Le Tallec⊃ ADMM)

• Unified analysis for convex
programming

(PPA applied to splitting operator

• Plethora!

11 / 55



Splitting Timeline - some milestones
• Constructive scheme for
linear dynamical systems
with structure
0 = (A1 +A2)x(t)+x′(t)
• Nonlinear systems
0 = (A1 +A2)(x, t)+x′(t)

(backward Euler for A1 + forward Euler for A2)

• Multivalued equations
0 ∈ (A1 +A2)(x, t)

(Gabay, Glowinski, Marroco, Le Tallec⊃ ADMM)

• Unified analysis for convex
programming

(PPA applied to splitting operator

• Plethora!

12 / 55



Splitting Timeline - some milestones
• Constructive scheme for
linear dynamical systems
with structure
0 = (A1 +A2)x(t)+x′(t)
• Nonlinear systems
0 = (A1 +A2)(x, t)+x′(t)

(backward Euler for A1 + forward Euler for A2)

• Multivalued equations
0 ∈ (A1 +A2)(x, t)

(Gabay, Glowinski, Marroco, Le Tallec⊃ ADMM)

• Unified analysis for convex
programming

(PPA applied to splitting operator

• Plethora!

13 / 55



Splitting Timeline - some milestones
• Constructive scheme for
linear dynamical systems
with structure
0 = (A1 +A2)x(t)+x′(t)
• Nonlinear systems
0 = (A1 +A2)(x, t)+x′(t)

(backward Euler for A1 + forward Euler for A2)

• Multivalued equations
0 ∈ (A1 +A2)(x, t)

(Gabay, Glowinski, Marroco, Le Tallec⊃ ADMM)

• Unified analysis for convex
programming

(PPA based, Bertsekas, Rockafellar)

• Plethora!

14 / 55



Splitting Timeline - some milestones
• Constructive scheme for
linear dynamical systems
with structure
0 = (A1 +A2)x(t)+x′(t)
• Nonlinear systems
0 = (A1 +A2)(x, t)+x′(t)

(backward Euler for A1 + forward Euler for A2)

• Multivalued equations
0 ∈ (A1 +A2)(x, t)

(Gabay, Glowinski, Marroco, Le Tallec⊃ ADMM)

• Unified analysis for convex
programming

(PPA based, Bertsekas, Rockafellar)

• Plethora!

15 / 55



Splitting cloud:
dynamical systems, multivalued equations,
distributed optimization, statistical learning

0 ∈ A(x) for A = A1+A2

akin to Newton’s method
to solve

0 = ∇f (x)

Can we exploit further
knowing A = ∂ f?

16 / 55



Splitting cloud:
dynamical systems, multivalued equations,
distributed optimization, statistical learning

0 ∈ A(x) for A = A1+A2

akin to Newton’s method
to solve

0 = ∇f (x)

Can we exploit further
knowing A = ∂ f?

16 / 55



Splitting cloud:
dynamical systems, multivalued equations,
distributed optimization, statistical learning

0 ∈ A(x) for A = A1+A2

akin to Newton’s method
to solve

0 = ∇f (x)

Can we exploit further
knowing A = ∂ f?

16 / 55



Splitting cloud:
dynamical systems, multivalued equations,
distributed optimization, statistical learning

0 ∈ A(x) for A = A1+A2

akin to Newton’s method
to solve

0 = ∇f (x)

Can we exploit further
knowing A = ∂ f?

16 / 55



Un petit détour. . .

source: Sarah Dry’s wordpress

17 / 55



Newton’s method for nonlinear systems

0 = G(x∗)

≈ G(xk)+G′(xk)dk

convergence xk+1 = xk +dk

18 / 55



Newton’s method for nonlinear systems

0 = G(x∗)

≈ G(xk)+G′(xk)dk

convergence xk+1 = xk +dk

18 / 55



Newton method is accurate

G(x) = 1+ x + x3/3

19 / 55



What about Newton’s method for optimization?

0 = G(x∗)

≈ G(xk)+G′(xk)dk

convergence

In optimization

G(x) = ∇f (x) for an objective f

20 / 55



What about Newton’s method for optimization?

0 = G(x∗)

≈ G(xk)+G′(xk)dk

convergence
In optimization

G(x) = ∇f (x) for an objective f

20 / 55



What about Newton’s method for optimization?

0 = ∇f (x∗)

≈ ∇f (xk)+∇2f (xk)dk

convergence
In optimization xk+1 = xk − [∇2f (xk)]−1∇f (xk)

G(x) = ∇f (x) for an objective f

min f ≈min f -model

min
d

f (xk)+
〈
∇f (xk),d

〉
+

1
2

〈
∇

2f (xk)d ,d
〉

21 / 55



What about Newton’s method for optimization?

0 = ∇f (x∗)

≈ ∇f (xk)+∇2f (xk)dk

convergence
In optimization xk+1 = xk − [∇2f (xk)]−1∇f (xk)

G(x) = ∇f (x) for an objective f
min f ≈min f -model

min
d

f (xk)+
〈
∇f (xk),d

〉
+

1
2

〈
∇

2f (xk)d ,d
〉

21 / 55



Newton iterates for optimization

G(x) = 1+ x + x3/3 =⇒ f (x) = x + x2/2+ x4/12

22 / 55



Newton iterates for optimization

23 / 55



Newton iterates for optimization

24 / 55



Newton iterates for optimization

Can we avoid computing the Hessian matrix? YES!

min
d

f (xk)+
〈
∇f (xk),d

〉
+

1
2

〈
Mk d ,d

〉
quasi-Newton matrix 0 = ∇f (xk)+Mkdk

25 / 55



Newton iterates for optimization

Can we avoid computing the Hessian matrix?

YES!

min
d

f (xk)+
〈
∇f (xk),d

〉
+

1
2

〈
Mk d ,d

〉
quasi-Newton matrix 0 = ∇f (xk)+Mkdk

25 / 55



Newton iterates for optimization

Can we avoid computing the Hessian matrix? YES!

min
d

f (xk)+
〈
∇f (xk),d

〉
+

1
2

〈
Mk d ,d

〉

quasi-Newton matrix 0 = ∇f (xk)+Mkdk

25 / 55



Newton iterates for optimization

Can we avoid computing the Hessian matrix? YES!

min
d

f (xk)+
〈
∇f (xk),d

〉
+

1
2

〈
Mk d ,d

〉
quasi-Newton matrix

0 = ∇f (xk)+Mkdk

25 / 55



Newton iterates for optimization

Can we avoid computing the Hessian matrix? YES!

min
d

f (xk)+
〈
∇f (xk),d

〉
+

1
2

〈
Mk d ,d

〉
quasi-Newton matrix 0 = ∇f (xk)+Mkdk

25 / 55



quasi-Newton iterates for optimization

Eventually, the true Hessian curvature is estimated only along the
generated directions

26 / 55



quasi-Newton methods are accurate too!

. . . fin du détour

27 / 55



quasi-Newton methods are accurate too!

. . . fin du détour

27 / 55



Splitting variants stem from primal and dual formulations

Applied to optimality conditions of

minx f 1(x)+ f 2(Mx) 0 ∈ ∂ f 1(x)+M⊤∂ f 2(Mx){
k th subproblem on ∂ f 1

k th subproblem on ∂ f 2

or its dual:
maxw −f 1∗(−M⊤w)− f 2∗(w) 0 ∈ M∂ f 1∗(−M⊤w)+∂ f 2∗(w){

k th subproblem on ∂ f 1∗

k th subproblem on ∂ f 2∗

Considering x = (x1,x2)

min
x1,x2

f 1(x1)+ f 2(x2) s.t. A1x1 +A2x2 = 0

write Lagrangian to make k th-subproblems easy

28 / 55



Splitting variants stem from primal and dual formulations

Applied to optimality conditions of

minx f 1(x)+ f 2(Mx) 0 ∈ ∂ f 1(x)+M⊤∂ f 2(Mx){
k th subproblem on ∂ f 1

k th subproblem on ∂ f 2

or its dual:
maxw −f 1∗(−M⊤w)− f 2∗(w) 0 ∈ M∂ f 1∗(−M⊤w)+∂ f 2∗(w){

k th subproblem on ∂ f 1∗

k th subproblem on ∂ f 2∗

Considering x = (x1,x2)

min
x1,x2

f 1(x1)+ f 2(x2) s.t. A1x1 +A2x2 = 0

write Lagrangian to make k th-subproblems easy

28 / 55



Splitting variants stem from primal and dual formulations

Applied to optimality conditions of

minx f 1(x)+ f 2(Mx) 0 ∈ ∂ f 1(x)+M⊤∂ f 2(Mx){
k th subproblem on ∂ f 1

k th subproblem on ∂ f 2

or its dual:
maxw −f 1∗(−M⊤w)− f 2∗(w) 0 ∈ M∂ f 1∗(−M⊤w)+∂ f 2∗(w){

k th subproblem on ∂ f 1∗

k th subproblem on ∂ f 2∗

Considering x = (x1,x2)

min
x1,x2

f 1(x1)+ f 2(x2) s.t. A1x1 +A2x2 = 0

write Lagrangian to make k th-subproblems easy

28 / 55



Splitting variants stem from primal and dual formulations

Applied to optimality conditions of

minx f 1(x)+ f 2(Mx) 0 ∈ ∂ f 1(x)+M⊤∂ f 2(Mx){
k th subproblem on ∂ f 1

k th subproblem on ∂ f 2

or its dual:
maxw −f 1∗(−M⊤w)− f 2∗(w) 0 ∈ M∂ f 1∗(−M⊤w)+∂ f 2∗(w){

k th subproblem on ∂ f 1∗

k th subproblem on ∂ f 2∗

Considering x = (x1,x2)

min
x1,x2

f 1(x1)+ f 2(x2) s.t. A1x1 +A2x2 = 0

write Lagrangian to make k th-subproblems easy
28 / 55



Splitting variants stem from primal and dual formulations

Rewriting often results from efforts to make k th-subproblems easy , for

min
x1,x2

f 1(x1)+ f 2(x2) s.t. A1x1 +A2x2 = 0

Lagrangian L(x ,w) =
2

∑
s=1

(
f s(xs)+

〈
As⊤w ,xs〉)

=
2

∑
s=1

Ls(xs,w)

Lagrangian relaxation approach
Primal step Having dual iterate wk , solve primal subproblems

min
x

L(x ,wk) = ∑
s
min

xs
L(xs,wk)

Dual step Use primal output to update dual variable

29 / 55



Splitting variants stem from primal and dual formulations

Rewriting often results from efforts to make k th-subproblems easy , for

min
x1,x2

f 1(x1)+ f 2(x2) s.t. A1x1 +A2x2 = 0

Lagrangian L(x ,w) =
2

∑
s=1

(
f s(xs)+

〈
As⊤w ,xs〉)

=
2

∑
s=1

Ls(xs,w)

Lagrangian relaxation approach
Primal step Having dual iterate wk , solve primal subproblems

min
x

L(x ,wk) = ∑
s
min

xs
L(xs,wk)

Dual step Use primal output to update dual variable

29 / 55



Splitting variants stem from primal and dual formulations

Rewriting often results from efforts to make k th-subproblems easy , for

min
x1,x2

f 1(x1)+ f 2(x2) s.t. A1x1 +A2x2 = 0

Lagrangian L(x ,w) =
2

∑
s=1

(
f s(xs)+

〈
As⊤w ,xs〉)

=
2

∑
s=1

Ls(xs,w)

Lagrangian relaxation approach
Primal step Having dual iterate wk , solve primal subproblems

min
x

L(x ,wk) = ∑
s
min

xs
L(xs,wk)

Dual step Use primal output to update dual variable

29 / 55



Rewriting often involves constraint with a simple subspace

Compressed sensing{ minx1,x2
1
2∥RTx1 −a∥2

2 +λ∥A1x1∥1

s.t. A1x1 − x2 = 0

30 / 55



Rewriting often involves constraint with a simple subspace

Compressed sensing{
minx1,x2

1
2∥RTx1 −a∥2

2 +λ∥A1x2 ∥1

s.t. A1x1 − x2 = 0

x ∈ N := {(x1,x2) :

[
A1

−I

](
x1

x2

)
= 0}

Progressive hedging
minx E[f s(x)]
s.t. x ∈ X s s ∈ S

⇐⇒


min

xs:s∈S
∑
s

psf s(xs)

s.t. xs ∈ X s s ∈ S
∑s Asxs = 0
⇐⇒ x ∈ N =?

31 / 55



Rewriting often involves constraint with a simple subspace

Compressed sensing{
minx1,x2

1
2∥RTx1 −a∥2

2 +λ∥A1x2 ∥1

s.t. A1x1 − x2 = 0 x ∈ N := {(x1,x2) :

[
A1

−I

](
x1

x2

)
= 0}

Progressive hedging
minx E[f s(x)]
s.t. x ∈ X s s ∈ S

⇐⇒


min

xs:s∈S
∑
s

psf s(xs)

s.t. xs ∈ X s s ∈ S
∑s Asxs = 0
⇐⇒ x ∈ N =?

31 / 55



Rewriting often involves constraint with a simple subspace

Compressed sensing{
minx1,x2

1
2∥RTx1 −a∥2

2 +λ∥A1x2 ∥1

s.t. A1x1 − x2 = 0 x ∈ N := {(x1,x2) :

[
A1

−I

](
x1

x2

)
= 0}

Progressive hedging
minx E[f s(x)]
s.t. x ∈ X s s ∈ S

⇐⇒


min

xs:s∈S
∑
s

psf s(xs)

s.t. xs ∈ X s s ∈ S
∑s Asxs = 0
⇐⇒ x ∈ N =?

31 / 55



Rewriting often involves constraint with a simple subspace

Compressed sensing{
minx1,x2

1
2∥RTx1 −a∥2

2 +λ∥A1x2 ∥1

s.t. A1x1 − x2 = 0 x ∈ N := {(x1,x2) :

[
A1

−I

](
x1

x2

)
= 0}

Progressive hedging
minx E[f s(x)]
s.t. x ∈ X s s ∈ S

⇐⇒


min

xs:s∈S
∑
s

psf s(xs)

s.t. xs ∈ X s s ∈ S
∑s Asxs = 0
⇐⇒ x ∈ N =?

31 / 55



Progressive hedging rewriting

n = 1 n = 3n = 2

p2

p3

p4

p5

p1

32 / 55



Progressive hedging rewriting

p1s = 1

n = 1 n = 3n = 2 n = 1 n = 3n = 2

p2

p3

p4

p5

p1

33 / 55



Progressive hedging rewriting

p2s = 2

p1s = 1

n = 1 n = 3n = 2 n = 1 n = 3n = 2

p2

p3

p4

p5

p1

34 / 55



Progressive hedging rewriting

p2s = 2

p3s = 3

p1s = 1

n = 1 n = 3n = 2 n = 1 n = 3n = 2

p2

p3

p4

p5

p1

35 / 55



Progressive hedging rewriting

p2s = 2

p3s = 3

p4s = 4

p1s = 1

n = 1 n = 3n = 2 n = 1 n = 3n = 2

p2

p3

p4

p5

p1

36 / 55



Progressive hedging rewriting

p2s = 2

p3s = 3

p4s = 4

p5s = 5

p1s = 1

n = 1 n = 3n = 2 n = 1 n = 3n = 2

p2

p3

p4

p5

p1

37 / 55



Progressive hedging rewriting

p2s = 2

p3s = 3

p4s = 4

p5s = 5

p1s = 1

n = 1 n = 3n = 2 n = 1 n = 3n = 2

p2

p3

p4

p5

p1

N :=

{
x = xs

n :
xs

1 = x1
1 x1

2=x2
2=x3

2
x3

2=x4
2

}

38 / 55



Progressive hedging rewriting

p2s = 2

p3s = 3

p4s = 4

p5s = 5

p1s = 1

n = 1 n = 3n = 2 n = 1 n = 3n = 2

p2

p3

p4

p5

p1 N :=

{
x = xs

n :
xs

1 = x1
1 x1

2=x2
2=x3

2
x3

2=x4
2

}

38 / 55



Progressive hedging rewriting

p2s = 2

p3s = 3

p4s = 4

p5s = 5

p1s = 1

n = 1 n = 3n = 2 n = 1 n = 3n = 2

p2

p3

p4

p5

p1 N :=

{
x = xs

n :
xs

1 = x1
1 x1

2=x2
2=x3

2
x3

2=x4
2

}

39 / 55



Progressive hedging rewriting

p2s = 2

p3s = 3

p4s = 4

p5s = 5

p1s = 1

n = 1 n = 3n = 2 n = 1 n = 3n = 2

p2

p3

p4

p5

p1 N :=

{
x = xs

n :
x1

s = x1
1 x1

2=x2
2=x3

2
x3

2=x4
2

}

40 / 55



Progressive hedging rewriting

p2s = 2

p3s = 3

p4s = 4

p5s = 5

p1s = 1

n = 1 n = 3n = 2 n = 1 n = 3n = 2

p2

p3

p4

p5

p1 N :=

{
x = xs

n :
x1

s = x1
1 x1

2=x2
2=x3

2
x3

2=x4
2

}

41 / 55



Splitting variants stem from primal and dual formulations

Rewriting often results from efforts to make k th-subproblems easy , for

min
(x1,x2,...,xs,...)

∑
s

f s(xs) s.t. ∑
s

Asxs = 0

AugmentedLagrangian
Lt0(x ,w) = ∑

s

(
f s(xs)+ ⟨As⊤w ,xs⟩

)
+

t0
2
∥∑

s
Asxs∥2 = ∑

s
Ls(xs,w)+

t0
2
∥∑

s
Asxs∥2

≈ ∑
s
Ls,k(xs,w)Ls,k(xs,w) := Lt0

(
(xs,xk ,−s),w

)
Augmented Lagrangian relaxation approach
Primal step Having dual iterate wk , solve primal subproblems

min
x

Lk(x ,wk) = ∑
s
min

xs
Lk(xs,wk)

Dual step Use primal output to update dual variable
42 / 55



Splitting variants stem from primal and dual formulations

Rewriting often results from efforts to make k th-subproblems easy , for

min
(x1,x2,...,xs,...)

∑
s

f s(xs) s.t. ∑
s

Asxs = 0

Augmented Lagrangian is not separable
Lt0(x ,w) = ∑

s

(
f s(xs)+ ⟨As⊤w ,xs⟩

)
+

t0
2
∥∑

s
Asxs∥2 = ∑

s
Ls(xs,w)+

t0
2
∥∑

s
Asxs∥2

≈ ∑
s
Ls,k(xs,w) Ls,k(xs,w) := Lt0

(
(xs,xk ,−s),w

)
Augmented Lagrangian relaxation approach (1st try, naı̈ve)

Primal step Having dual iterate wk , solve primal subproblems

min
x

Lt0(x ,w
k )̸=∑

s
min

xs
Ls

t0(x
s,wk)

Dual step Use primal output to update dual variable
43 / 55



Splitting variants stem from primal and dual formulations

Rewriting often results from efforts to make k th-subproblems easy , for

min
(x1,x2,...,xs,...)

∑
s

f s(xs) s.t. ∑
s

Asxs = 0

Augmented Lagrangian is not separable
Lt0(x ,w) = ∑

s

(
f s(xs)+ ⟨As⊤w ,xs⟩

)
+

t0
2
∥∑

s
Asxs∥2 = ∑

s
Ls(xs,w)+

t0
2
∥∑

s
Asxs∥2

≈ Lk(x ,w)separable

Augmented Lagrangian relaxation approach
Primal step Having dual iterate wk , solve approximate primal subproblems

min
x

Lk(x ,wk) = ∑
s
min

xs
Lt0

(
(xs,xk ,−s),wk

)
Project primal output onto N

Dual step Use primal output to update dual variable
44 / 55



The progressive hedging algorithm (RW91)

Given xk = (xk ,s : s ∈ S) ∈ N and wk = (wk ,s : s ∈ S) ∈ N⊥

and a fixed prox-parameter t0 > 0

1. solves in parallel xk+1
2 ,s = argminxs Lt0((x

s,xk ,−s),wk ,s)

2. projects onto N to define xk+1 N⊥to define wk+1

3. computes wk+1 = wk + t0(xk+1
2 − xk) xk+1

45 / 55



The progressive hedging algorithm (RW91)

Given xk = (xk ,s : s ∈ S) ∈ N and wk = (wk ,s : s ∈ S) ∈ N⊥

and a fixed prox-parameter t0 > 0

1. solves in parallel xk+1
2 ,s = argminxs Lt0((x

s,xk ,−s),wk ,s)

2. projects onto N to define xk+1 N⊥to define wk+1

3. computes wk+1 = wk + t0(xk+1
2 − xk) xk+1

45 / 55



The progressive hedging algorithm (RW91)

Given xk = (xk ,s : s ∈ S) ∈ N and wk = (wk ,s : s ∈ S) ∈ N⊥

and a fixed prox-parameter t0 > 0

1. solves in parallel xk+1
2 ,s = argminxs Lt0((x

s,xk ,−s),wk ,s)

2. projects onto N to define xk+1 N⊥to define wk+1

3. computes wk+1 = wk + t0(xk+1
2 − xk) xk+1

45 / 55



The progressive hedging algorithm (RW91)

Given xk = (xk ,s : s ∈ S) ∈ N and wk = (wk ,s : s ∈ S) ∈ N⊥

and a fixed prox-parameter t0 > 0

1. solves in parallel xk+1
2 ,s = argminxs Lt0((x

s,xk ,−s),wk ,s)

2. projects onto N to define xk+1 N⊥to define wk+1

3. computes wk+1 = wk + t0(xk+1
2 − xk) xk+1

45 / 55



The progressive hedging algorithm (RW91)

Given xk = (xk ,s : s ∈ S) ∈ N and wk = (wk ,s : s ∈ S) ∈ N⊥

and a fixed prox-parameter t0 > 0

1. solves in parallel xk+1
2 ,s = argminxs Lt0((x

s,xk ,−s),wk ,s)

BUT convergence relies on DR for OC
cannot vary t0, it remains fixed!

2. projects onto N to define xk+1 N⊥to define wk+1

3. computes wk+1 = wk + t0(xk+1
2 − xk) xk+1

46 / 55



The progressive hedging algorithm (RW91)

Given xk = (xk ,s : s ∈ S) ∈ N and wk = (wk ,s : s ∈ S) ∈ N⊥

and a fixed prox-parameter t0 > 0

1. solves in parallel xk+1
2 ,s = argminxs Lt0((x

s,xk ,−s),wk ,s)

t0 = 1
t0 = 10
t0 = 100

2. projects onto N to define xk+1 N⊥to define wk+1

3. computes wk+1 = wk + t0(xk+1
2 − xk) xk+1

Can we exploit knowing A = ∂ f?

47 / 55



The progressive hedging algorithm (RW91)

Given xk = (xk ,s : s ∈ S) ∈ N and wk = (wk ,s : s ∈ S) ∈ N⊥

and a fixed prox-parameter t0 > 0

1. solves in parallel xk+1
2 ,s = argminxs Lt0((x

s,xk ,−s),wk ,s)

t0 = 1
t0 = 10
t0 = 100

2. projects onto N to define xk+1 N⊥to define wk+1

3. computes wk+1 = wk + t0(xk+1
2 − xk) xk+1

Can we exploit knowing A = ∂ f?

47 / 55



The projective trick

1. Find primal intermediate points in parallel

xk+1
2 ,s = argminxs Lt0((x

s,xk ,−s),wk ,s)

proxt0
Lk ,s(·,wk ,s)(xk ,s)

2. Project primal iterate onto N
3. Update dual iterate

48 / 55



The projective trick

1. Find primal intermediate points in parallel

xk+1
2 ,s = argminxs Lt0((x

s,xk ,−s),wk ,s)

xk+1
2 ,s = proxt0

Lk ,s(·,wk ,s)(xk ,s)

2. Project primal iterate onto N
3. Update dual iterate

=⇒ let’s interpret primal update in terms of the dual problem

DUAL solves iteratively

{
min H(w) = ∑

s
Hs(ws)

s.t. w ∈ N⊥

by computing proximal points for individual models Hk ,s

49 / 55



The projective trick

1. Find primal intermediate points in parallel

xk+1
2 ,s = argminxs Lt0((x

s,xk ,−s),wk ,s)

xk+1
2 ,s = proxt0

Lk ,s(·,wk ,s)(xk ,s)

2. Project primal iterate onto N
3. Update dual iterate

=⇒ let’s interpret primal update in terms of the dual problem

DUAL solves iteratively

{
min H(w) = ∑

s
Hs(ws)

s.t. w ∈ N⊥

by computing proximal points for individual models Hk ,s

49 / 55



The projective trick

1. Find primal intermediate points in parallel

xk+1
2 ,s = argminxs Lt0((x

s,xk ,−s),wk ,s)

xk+1
2 ,s = proxt0

Lk ,s(·,wk ,s)(xk ,s)

2. Project primal iterate onto N
3. Update dual iterate

=⇒ let’s interpret primal update in terms of the dual problem

DUAL solves iteratively

{
min H(w) = ∑

s
Hs(ws)

s.t. w ∈ N⊥

by computing proximal points for individual models Hk ,s

49 / 55



The projective trick in the dual

1. Find dual intermediate points in parallel

wk+1
2 ,s = prox

1
t0
Hk ,s(wk ,s)

2. Project dual iterate onto N⊥

3. Update primal iterate

=⇒ by computing proximal points for individual models Hk ,s in the
dual problem we can now compare

the dual models Hk ,s with the dual functions Hs

– Bad fit: decrease t0
– Good fit: ok! t0 can increase
Bad/good fit dichotomy ≡ null/serious steps in bundle methods

50 / 55



The projective trick in the dual

1. Find dual intermediate points in parallel

wk+1
2 ,s = prox

1
t0
Hk ,s(wk ,s)

2. Project dual iterate onto N⊥

3. Update primal iterate
=⇒ by computing proximal points for individual models Hk ,s in the
dual problem we can now compare

the dual models Hk ,s with the dual functions Hs

– Bad fit: decrease t0
– Good fit: ok! t0 can increase
Bad/good fit dichotomy ≡ null/serious steps in bundle methods

50 / 55



The projective trick in the dual

1. Find dual intermediate points in parallel

wk+1
2 ,s = prox

1
t0
Hk ,s(wk ,s)

2. Project dual iterate onto N⊥

3. Update primal iterate
=⇒ by computing proximal points for individual models Hk ,s in the
dual problem we can now compare

the dual models Hk ,s with the dual functions Hs

– Bad fit: decrease t0
– Good fit: ok! t0 can increase

Bad/good fit dichotomy ≡ null/serious steps in bundle methods

50 / 55



The projective trick in the dual

1. Find dual intermediate points in parallel

wk+1
2 ,s = prox

1
t0
Hk ,s(wk ,s)

2. Project dual iterate onto N⊥

3. Update primal iterate
=⇒ by computing proximal points for individual models Hk ,s in the
dual problem we can now compare

the dual models Hk ,s with the dual functions Hs

– Bad fit: decrease t0
– Good fit: ok! t0 can increase
Bad/good fit dichotomy ≡ null/serious steps in bundle methods

50 / 55



Goodies of Bundle PH - convergence

=⇒ allows to increase/decrease tk
fits model-based descent theory (Atenas, Sagastizábal, Silva, Solodov, SiOPT 2023),
extended to handle projective step(Atenas, Sagastizábal, JoCA 2023)

If tk+1 ∈ [tmin, tmax]

▶ Convergence for infinite subsequence of serious steps
–Global convergence with linear rate if error bound

▶ Convergence for infinite tail of null steps
–Last generated serious iterate was optimal
–The null tail converges to last serious
–no rate

=⇒ implementable stopping test!

51 / 55



Goodies of Bundle PH - convergence

=⇒ allows to increase/decrease tk
fits model-based descent theory (Atenas, Sagastizábal, Silva, Solodov, SiOPT 2023),
extended to handle projective step(Atenas, Sagastizábal, JoCA 2023)

If tk+1 ∈ [tmin, tmax]

▶ Convergence for infinite subsequence of serious steps
–Global convergence with linear rate if error bound

▶ Convergence for infinite tail of null steps
–Last generated serious iterate was optimal
–The null tail converges to last serious
–no rate

=⇒ implementable stopping test!

51 / 55



Goodies of Bundle PH - convergence

=⇒ allows to increase/decrease tk
fits model-based descent theory (Atenas, Sagastizábal, Silva, Solodov, SiOPT 2023),
extended to handle projective step(Atenas, Sagastizábal, JoCA 2023)

If tk+1 ∈ [tmin, tmax]

▶ Convergence for infinite subsequence of serious steps
–Global convergence with linear rate if error bound

▶ Convergence for infinite tail of null steps
–Last generated serious iterate was optimal
–The null tail converges to last serious
–no rate

=⇒ implementable stopping test!

51 / 55



Goodies of Bundle PH - Performance

52 / 55



To know more: related references

JoCA SiOPT
vol 30(2), 2023 vol 33(1), 2023

53 / 55



Bonus track

▶ The family of proximal decomposition methods (separable augmented Lagrangians by
Philippe Mahey, Adam Ouorou, Jean-Pierre Dussault, co-authors)

minx ,y ∑
j

fj(xj)

s.t. xj ∈ Sj ∀j
gj(xj)+ yj = 0 ∀j
∑j gj(xj) = 0 ⇐⇒ (y1, . . . ,yj , . . .) ∈ N

The unified theory is applicable to t extends those methods to weakly convex problems
+ linear rate + varying prox-parameter

54 / 55



Bonus track

▶ The family of proximal decomposition methods (separable augmented Lagrangians by
Philippe Mahey, Adam Ouorou, Jean-Pierre Dussault, co-authors)

minx ,y ∑
j

fj(xj)

s.t. xj ∈ Sj ∀j
gj(xj)+ yj = 0 ∀j
∑j yj = 0

⇐⇒ (y1, . . . ,yj , . . .) ∈ N

▶ The unified theory extends those methods to weakly convex problems + linear rate +
stopping test + varying prox-parameter!

▶ What about Decomposition-Coordination Methods ?
(separable augmented Lagrangians by Pierre Carpentier, Guy Cohen, Jean-Christophe Culioli,
co-authors https://doi.org/10.1007/978-3-642-46823-0_6

55 / 55

https://doi.org/10.1007/978-3-642-46823-0_6


Bonus track

▶ The family of proximal decomposition methods (separable augmented Lagrangians by
Philippe Mahey, Adam Ouorou, Jean-Pierre Dussault, co-authors)

minx ,y ∑
j

fj(xj)

s.t. xj ∈ Sj ∀j
gj(xj)+ yj = 0 ∀j
∑j yj = 0 ⇐⇒ (y1, . . . ,yj , . . .) ∈ N

▶ The unified theory extends those methods to weakly convex problems + linear rate +
stopping test + varying prox-parameter!

▶ What about Decomposition-Coordination Methods ?
(separable augmented Lagrangians by Pierre Carpentier, Guy Cohen, Jean-Christophe Culioli,
co-authors https://doi.org/10.1007/978-3-642-46823-0_6

55 / 55

https://doi.org/10.1007/978-3-642-46823-0_6


Bonus track

▶ The family of proximal decomposition methods (separable augmented Lagrangians by
Philippe Mahey, Adam Ouorou, Jean-Pierre Dussault, co-authors)

minx ,y ∑
j

fj(xj)

s.t. xj ∈ Sj ∀j
gj(xj)+ yj = 0 ∀j
∑j yj = 0 ⇐⇒ (y1, . . . ,yj , . . .) ∈ N

▶ The unified theory extends those methods to weakly convex problems + linear rate +
stopping test + varying prox-parameter!

▶ What about Decomposition-Coordination Methods ?
(separable augmented Lagrangians by Pierre Carpentier, Guy Cohen, Jean-Christophe Culioli,
co-authors https://doi.org/10.1007/978-3-642-46823-0_6

55 / 55

https://doi.org/10.1007/978-3-642-46823-0_6


Bonus track

▶ The family of proximal decomposition methods (separable augmented Lagrangians by
Philippe Mahey, Adam Ouorou, Jean-Pierre Dussault, co-authors)

minx ,y ∑
j

fj(xj)

s.t. xj ∈ Sj ∀j
gj(xj)+ yj = 0 ∀j
∑j yj = 0 ⇐⇒ (y1, . . . ,yj , . . .) ∈ N

▶ The unified theory extends those methods to weakly convex problems + linear rate +
stopping test + varying prox-parameter!

▶ What about Decomposition-Coordination Methods ?
(separable augmented Lagrangians by Pierre Carpentier, Guy Cohen, Jean-Christophe Culioli,
co-authors https://doi.org/10.1007/978-3-642-46823-0_6

55 / 55

https://doi.org/10.1007/978-3-642-46823-0_6

