11ième Biennale Française de Mathématiques Appliquées et Industrielles:

du 22 mai au 26 mai 2023 - Le Gosier, Guadeloupe

A mixture-like model for tumor-immune system interactions

$\begin{array}{ccc} \textbf{C. Tayou Fotso}^1 & \text{Simon Girel}^1 & \text{Fabienne Anjuère}^2 \\ \text{Véronique M. Braud}^2 & \text{Florence Hubert}^3 & \text{Thierry Goudon}^1 \end{array}$

¹Université Côte d'Azur, Inria, CNRS, LJAD UMR 7351, Nice, France

²Université Côte d'Azur, CNRS, Institut de Pharmacologie Moléculaire et Cellulaire UMR 7275, Valbonne, France

³Aix Marseille Université, I2M UMR 7373, Marseille, France

Cutaneous squamous cell carcinomas

• 70,000 new cases of cutaneous carcinoma appear each year in France.

https://www.santemagazine.fr/

- Treatments for cutaneous carcinoma?
 - First curative treatment: In bloc surgical resection with safe margins (6 - 10mm) sentinel node dissection for no high risk tumor,
 - Lymph node dissection for Np,
 - Adjuvant radiotherapy for bad prognosis tumor,
 - Adjuvant chemotherapy,
 - New biotherapies: Anti EGFR, Immunotherapy Anti-PD1.

Cancer immunosurveillance

- Elimination : tumor cells are simply destroyed by the immune response,
- Equilibrium : the immune system maintains and controls the tumor in a viable state,
- **Escape**: with the unlimited growth of the tumor.

K. Atsou, F. Anjuère, V. M. Braud, T. Goudon. J. Theor. Biol, 2020.

< ロ > < 回 > < 回 > < 回 > < 回 >

K. Atsou, F. Anjuère, V. M. Braud, T. Goudon. Plos One, 2021

T.Goudon and al. Front Oncol, 2022.

Imaging mass cytometry reveals TME of cutaneous squamous cell carcinoma

société de mathématiques apoliquées et industrielles

A patient with cutaneous squamous carcinoma: Case of 1D simulation of tumor-immune system interactions

Figure: ϕ_n : volume fraction of tumor cells, ϕ_a : volume fraction of antitumor immune cells.

< = > < @ > < = > < = >

Model description Competition for space and resources: schematic view of the main mechanisms

- "constituents": **tumor**, (anti- and protumor) **immune cells** and **environment**(other cells and tissues, extracellular matrix and interstitial fluid...).
- "substances": nutrient, oxygen, cytokines and chemokines.

• "constituents": volume fractions ϕ_j of phases $j \in \{1, ..., J\}$

$$\partial_t(\rho_j\phi_j) + \nabla_x\cdot\mathscr{J}_j = \Gamma_j,$$

with

- ρ_j the typical mass density of the phase j,
- Γ_j the mass exchange term,
- \mathcal{J}_j the mass fluxes.
- "substances": concentration $\alpha_k \ k \in \{1, ..., K\}$ obey convection-diffusion equations, with gain and loss reaction terms.

References:

D.Ambrosi and L.Preziosi. Math.Mod.Meth.Appl.Sci, 2002. B.Polizzi, O.Bernard and M.Ribot, J.Theor.Biol. 2017.

D.1 01221, O.Dernara ana M.11001. J.111e01.Diol, 2017.

S.Labarthe, B.Polizzi, T.Phan, T.Goudon, M.Ribot and B.Laroche. J.Theor.Biol, 2019.

Mass exchange terms and substances equations

The mass exchange term Γ_j can naturally be split into **gain** and **loss** terms:

$$\Gamma_j \,=\, Q_j \,-\, \rho_j \phi_j {\cal L}_j$$

Oxygen and nutrient

The concentration O satisfies the Poisson equation

$$\underbrace{\nabla_x \cdot \left(O\chi_O \nabla_x \phi_n \right)}_{\mathbf{\nabla}_x \mathbf{\nabla}_x \mathbf{\nabla}_x$$

convection

diffusion

with R source/consumption term

Cytokines and CAF

The evolution of cytokine concentration is driven by a mere ODE

$$\frac{\mathrm{d}}{\mathrm{d}t}I = \psi - \frac{I}{\tau},$$

with $\tau>0$ a relaxation time and ψ a threshold function.

Volumic constraints and Stokes-like system

A crucial feature of the model

Constraint on volume fractions $\sum \phi_j = 1$ i=1

Degraded version of momentum equations

all velocities expressed by means of V_m , Π

$$\begin{split} V_n &= V_m - \frac{1}{\frac{\phi_m \lambda_{nm}}{\phi_m \lambda_{nm}}} (\nabla_x \Pi + \nabla_x \mathscr{P}) \\ V_a &= V_m - \frac{1}{\frac{\phi_m \lambda_{am}}{1}} \left(\nabla_x \Pi - \chi_a \nabla_x \Phi + \frac{D_a}{\phi_a} \nabla_x \phi_a \right), \\ V_p &= V_m - \frac{1}{\frac{\phi_m \lambda_{pm}}{\phi_m \lambda_{pm}}} \left(\nabla_x \Pi - \chi_p \nabla_x \Phi + \frac{D_p}{\phi_p} \nabla_x \phi_p \right). \end{split}$$

constraint on the mean volume velocity

$$\nabla_x \cdot \left(\sum_{j=1}^J \frac{\mathscr{I}_j}{\rho_j}\right) = \nabla_x \cdot \left(\sum_{j=1}^J \phi_j V_j\right) = \sum_{j=1}^J \frac{\Gamma_j}{\rho_j}$$

₽ that satisfy a Stokes-like system

boundary conditions, must be compatible with this equation

$$\boxed{\int_{\partial\Omega}\sum_{j=1}^{J}\frac{\mathscr{I}_{j}}{\rho_{j}}\cdot\nu_{x}\,\mathrm{d}\sigma_{x}=\int_{\Omega}\sum_{j=1}^{J}\frac{\Gamma_{j}}{\rho_{j}}\,\mathrm{d}x}$$

11

 $\begin{pmatrix} -\frac{\mu_m}{\rho_m} \Delta_x & \nabla_x \\ \nabla_x \cdot & -\nabla_x \cdot (\alpha \nabla_x) \end{pmatrix} \begin{pmatrix} V_m \\ \Pi \end{pmatrix} = RHS$

where V_m is velocity field of environment, II Lagrange multiplier of the constraint and α positively valued.

with ν_x outward unit normal at $x \in \partial \Omega$.

Evolution of an immune-free small tumor volume fraction Tumor growth model: Competition for space of tumor cells

$$\left\{ \begin{array}{l} \partial_t(\rho_n\phi_n) - \partial_x \Big(\underbrace{\frac{\rho_n\phi_n \mathscr{D}'(\phi_n)}{\lambda_{nm}(1-\phi_n)}\partial_x\phi_n}_{\mathcal{J}_n = \rho_n\phi_n V_n} \Big) = \frac{\rho_n\phi_n}{\tau_n}\Upsilon(\mathscr{P}), \\ \mathscr{J}_n = \rho_n\phi_n V_n \\ \varphi_n \big|_{x=0,L} = 0, \end{array} \right.$$

where
$$\Upsilon(\mathscr{P}) = 1 - \frac{\mathscr{P}}{p*}$$
, and

$$\mathscr{P}(\phi_n) = \frac{\nu}{\nu - 1} \left(\frac{\phi_n}{\phi_*} \right)^{\nu - 1}$$

 $\mathscr{P}(\phi_n)$ describe the homeostatic pressure. <u>References</u>: <u>B.Perthame</u>, F.Quirós and J.Vázquez.

Arch.Rat.Mech.Anal, 2014.

N.David and B.Perthame. J.Math.Pures Appl, 2021.

< = > < @ > < = > < = >

Role of the stress exerted on the tumor(parameter ν)

 \mathbf{p}

$$\partial_{t}(\rho_{n}\phi_{n}) + \partial_{x}\left(\rho_{n}\phi_{n}\left(V_{m} - \frac{\partial_{x}\Pi}{\lambda_{nm}(1 - \phi_{n})}\right)\right) - \partial_{x}\left(\frac{\rho_{n}\phi_{n}\mathscr{D}'(\phi_{n})}{\lambda_{nm}(1 - \phi_{n})}\partial_{x}\phi_{n}\right) = \frac{\rho_{n}\phi_{n}}{\tau_{n}}\Upsilon(\mathscr{P}, \mathcal{O}),$$

$$\phi_{n}|_{x=0,L} = 0, \quad \phi_{n}(0, x) = 0.1 \times \exp^{-40x^{2}}$$

$$V_{m} \cdot v_{x}|_{x=0,L} = \int_{0}^{L}\left(\frac{\Gamma_{a}}{\rho_{a}} + \frac{\Gamma_{p}}{\rho_{p}} + \frac{\Gamma_{n}}{\rho_{n}} + \frac{\Gamma_{m}}{\rho_{m}}\right)dx,$$

$$O|_{x=0,L} = O_{bd}.$$

$$\Upsilon(\mathscr{P}, \mathcal{O}) = k_{+}O[\mathcal{O}-\mathcal{O}^{*}]_{+} - \left(k_{-}O[\mathcal{O}-\mathcal{O}_{*}]_{-} + \frac{\mathscr{P}}{p_{*}}\right)$$

$$O_{*} \text{ is necrotic threshold and }\mathcal{O}^{*} \text{ is proliferation threshold.}$$

$$\bullet \text{ when } \mathcal{O} \in [\mathcal{O}, \mathcal{O}^{*}] \text{ (quiescent phase),}$$

$$\bullet \text{ when } \mathcal{O} \in [\mathcal{O}, \mathcal{O}^{*}] \text{ (quiescent phase),}$$

$$\Psi(\mathsf{W}) = O^{*} < \mathcal{O}, \Upsilon > 0 \text{ proliferation threshold.}$$

$$\bullet \text{ when } \mathcal{O}^{*} < \mathcal{O}, \Upsilon > 0 \text{ proliferation threshold.}$$

$$\bullet \text{ when } \mathcal{O}^{*} < \mathcal{O}, \Upsilon > 0 \text{ proliferation threshold.}$$

$$\bullet \text{ when } \mathcal{O}^{*} < \mathcal{O}, \Upsilon > 0 \text{ proliferation threshold.}$$

$$\bullet \text{ when } \mathcal{O}^{*} < \mathcal{O}, \Upsilon > 0 \text{ proliferation threshold.}$$

$$\bullet \text{ when } \mathcal{O}^{*} < \mathcal{O}, \Upsilon > 0 \text{ proliferation threshold.}$$

$$\bullet \text{ when } \mathcal{O}^{*} < \mathcal{O}, \Upsilon > 0 \text{ proliferation threshold.}$$

$$\bullet \text{ when } \mathcal{O}^{*} < \mathcal{O}, \Upsilon > 0 \text{ proliferation threshold.}$$

$$\bullet \text{ when } \mathcal{O}^{*} < \mathcal{O}, \Upsilon > 0 \text{ proliferation threshold.}$$

$$\bullet \text{ when } \mathcal{O}^{*} < \mathcal{O}, \Upsilon > 0 \text{ proliferation threshold.}$$

$$\bullet \text{ when } \mathcal{O}^{*} < \mathcal{O}, \Upsilon > 0 \text{ proliferation threshold.}$$

$$\bullet \text{ when } \mathcal{O} < \mathcal{O}, \mathcal{O}, \Upsilon > 0 \text{ proliferation threshold.}$$

$$\bullet \text{ when } \mathcal{O} < \mathcal{O}, \mathcal{O}, \Upsilon > 0 \text{ proliferation threshold.}$$

Ability of the tumor in attracting oxygen/nutrients supplies and degradation of environment by cytokines(parameter f_*)

Figure: Source S_O vary: inhomogeneous source far from the tumor(left), inhomogeneous source close to the tumor(right). $\chi_O = .5$, with a stress on tumor $\nu = 50$.

Ability of the tumor in attracting oxygen/nutrients supplies and degradation of environment by cytokines(parameter f_*)

Figure: Source S_O vary: inhomogeneous source far from the tumor(left), inhomogeneous source close to the tumor(right). $\chi_O = 3.4$, with a stress on tumor $\nu = 50$.

< = > < @ > < = > < = >

Antitumor immune response in a complex environment: Equilibrium phases

Simulation of the full model: from Equilibrium to Escape

appliquées et industrielles

Thank You For Your Kind Attention!

◆ロ▶◆御▶◆臣▶◆臣▶ 臣 のへで