Combination of nonconforming finite element method  $\phi$ -FEM with neural networks

Vanessa LLERAS University of Montpellier Institut Montpelliérain Alexander Grothendieck





Joint work with Michel Duprez (INRIA Mimesis), Alexei Lozinski (University of Franche-Comté), Vincent Vigon (University of Strasbourg) and Killian Vuillemot (University of Montpellier)

# Outline

- 1. Motivation
- 2. Unfitted methods and  $\phi$ -FEM method
- 3. Applications in machine learning
- 4. Summary and outlook

# Motivation

**Objectives :** develop real-time, predictive digital twins for computer-aided interventions in the fields of surgery, interventional radiology, and neuro-stimulation.



• What can we do on complex geometries? How can we simulate the deformation of soft tissues?

# Motivation

• Solving PDEs using finite element methods on non matching grids



- A simpler treatment of complex geometries, cracks, material interfaces, ...
- we can treat domain changing on iterations : Inverse problems, shape optimization
- we can treat domain changing in time : Fluid-Structure interaction, particulate flows, ...

 $\oplus$  No need to remesh,

- $\oplus$  regular cells to facilitate an efficient matrix-free implementation
- $\ominus$  adapt the weak formulation
- $\ominus$  Conditioning of the finite element matrix

# Motivation

• Combining machine learning with numerical methods



#### **Conventional methods**

- solve one instance
- require the explicit form
- trade off on resolution
- slow on fine grids, fast on coarse grids

#### Data driven methods

- Learn a family of PDE
- data driven
- resolution invariant, mesh invariant
- slow to train, fast to evaluate

Immersed boundary/ unfitted mesh methods may be useful in Deep Learning applications A simple representation of the geometry is desirable if one want to learn the map

(geometry of domain)  $\rightarrow$  (solution on domain)

# Previous works on non matching grids

- Classical fictitious domain methods Saul'ev '63, Astrakhantsev '78, Glowinski et al. 1990's
   ⊕ Easy to implement
   ⊖ poor accuracy O(√h)
  - $\ominus$  large FE matrix and bad condition number

— XFEM Moes-Bechet-Tourbier '06, Haslinger-Renard '09
 ⊕ Good condition number

 $\ominus$  Non-classical shape functions and discontinuity in the integrals

— CutFEM Burman-Hansbo 2010-2014

 $\oplus$  Optimal accuracy

 $\ominus$  Not straigtforward to implement : cut integrals

— Shifted Boundary Method (SBM) : Main-Scovazzi '17, Nouveau and al.

- Taylor development near the boundary
- $\oplus$  Optimal accuracy, no integrals on cut elements
- $\ominus$  Treatment of Neumann conditions
- $\ominus$  Require more geometrical information







Let the domain  $\Omega$  and its boundary  $\Gamma$  be given by a level-set function  $\phi$  :

$$\Omega := \{ \phi < 0 \} \text{ and } \Gamma = \{ \phi = 0 \}$$

 $\Omega_h$  only slightly larger than  $\Omega$ .



$$\begin{split} \mathcal{T}_h &: \phi\text{-FEM mesh} \\ \mathcal{T}_h^{\Gamma} &: \text{Cells of } \mathcal{T}_h \text{ cut by the boundary} \\ \mathcal{F}_h^{\Gamma} &: \text{Internal facets of } \mathcal{T}_h^{\Gamma} \end{split}$$

**General procedure :**  $-\Delta u = f$  in  $\Omega$ , u = 0 on  $\partial \Omega$ 

- Extend the governing equations from  $\Omega$  to  $\Omega_h$  and write down a non standard variational formulation on the extended domain  $\Omega_h$  without taking into account the boundary conditions on  $\partial\Omega$ .

$$\int_{\Omega_h} 
abla u \cdot 
abla v - \int_{\partial \Omega_h} (\partial_n u) v = \int_{\Omega_h} f v$$

— Impose the boundary conditions using appropriate ansatz or additional variables, explicitly involving the level set  $\phi$ :

$$\boldsymbol{u} = \phi \boldsymbol{w}$$

- Add appropriate stabilization, including the ghost penalty as in CutFEM plus a least square imposition of the governing equation on the mesh cells near the boundary, to guarantee coerciveness/stability on the discrete level.
- The level set is known only approximately,  $\phi_h$  is the Lagrange interpolation of  $\phi$  of order  $l \ge k+1$
- Find  $w_h$  (FEM of degree k) such that

$$\int_{\Omega_h} \nabla(\phi_h w_h) \cdot \nabla(\phi_h z_h) - \int_{\partial \Omega_h} (\partial_n \phi_h w_h) \phi_h z_h + Stab.terms = \int_{\Omega_h} f \phi_h z_h + Stab.terms$$

**General procedure :**  $-\Delta u = f$  in  $\Omega$ , u = 0 on  $\partial \Omega$ 

- Extend the governing equations from  $\Omega$  to  $\Omega_h$  and write down a non standard variational formulation on the extended domain  $\Omega_h$  without taking into account the boundary conditions on  $\partial \Omega$ .

$$\int_{\Omega_h} 
abla u \cdot 
abla v - \int_{\partial\Omega_h} (\partial_n u) v = \int_{\Omega_h} f v$$

— Impose the boundary conditions using appropriate ansatz or additional variables, explicitly involving the level set  $\phi$ :

$$u = \phi w$$

- Add appropriate stabilization, including the ghost penalty as in CutFEM plus a least square imposition of the governing equation on the mesh cells near the boundary, to guarantee coerciveness/stability on the discrete level.
- The level set is known only approximately,  $\phi_h$  is the Lagrange interpolation of  $\phi$  of order  $l \geq k+1$
- Find  $w_h$  (FEM of degree k) such that

$$\begin{split} &\int_{\Omega_h} \nabla(\phi_h w_h) \cdot \nabla(\phi_h z_h) - \int_{\partial\Omega_h} (\partial_n \phi_h w_h) \phi_h z_h \\ &+ \sigma_D h \sum_{E \in \mathcal{F}_h^{\Gamma}} \int_E \left[ \partial_n (\phi_h w_h) \right] \left[ \partial_n (\phi_h z_h) \right] + \sigma_D h^2 \sum_{T \in \mathcal{T}_h^{\Gamma}} \int_T \Delta(\phi_h w_h) \Delta(\phi_h z_h) \\ &= \int_{\Omega_h} f \phi_h z_h + -\sigma_D h^2 \sum_{T \in \mathcal{T}_h^{\Gamma}} \int_T f \Delta(\phi_h z_h) \end{split}$$

• easy of implementation : standard shape functions, all the integrals can be computed by standard quadrature rules on entire mesh cells and on entire boundary facets.

• Optimal convergence : in the  $L^2$  norm : sub-optimal in theory, optimal in practice.

•  $\phi$ -FEM works high polynomial orders : it suffices to approximate the level set function by piecewise polynomials of the same degree as that used for the primal unknown.

• Good conditioning of the matrix : The finite

 $\kappa(A) := ||A||_2 ||A^{-1}||_2 < Ch^{-2}$ 

element matrix of  $\phi$ -FEM satisfies



 $P_2$  finite elements;  $P_3$  finite elements



With stabilisation. Without stabilisation

• The method works for elasticity problem, a simple fracture problem, Stokes problem and an example of particulate flows, heat equation.

• FNO uses FFT, so that the solution should be represented on a Cartesian grid

• accurate than other deep learning method, faster than conventional solvers : In KOVACHKI et al, Neural Operator : Learning Maps Between Function Spaces (2022), the mean relative L2 errors on meshes  $N \times N$ 

| Networks | N = 85 | N = 141 | N = 211 | N = 421 |
|----------|--------|---------|---------|---------|
| NN       | 0.1716 | 0.1716  | 0.1716  | 0.1716  |
| FCN      | 0.0253 | 0.0493  | 0.0727  | 0.1097  |
| PCANN    | 0.0299 | 0.0298  | 0.0298  | 0.0299  |
| RBM      | 0.0244 | 0.0251  | 0.0255  | 0.0259  |
| DeepONet | 0.0476 | 0.0479  | 0.0462  | 0.0487  |
| GNO      | 0.0346 | 0.0332  | 0.0342  | 0.0369  |
| LNO      | 0.0520 | 0.0461  | 0.0445  | —       |
| MGNO     | 0.0416 | 0.0428  | 0.0428  | 0.0420  |
| FNO      | 0.0108 | 0.0109  | 0.0109  | 0.0098  |

• it takes a step size much bigger than is allowed in numerical methods

• FNO demonstrate very good efficiency for different settings : for example Navier Stokes :



- the network can perform multi-resolution
- the training can be made on many PDEs with the same underlying architecture.

The FNO is a parametric application :

$$\mathcal{G}_{\theta}^{\dagger}: \mathbb{R}^{ni \times nj \times 3} \xrightarrow{P} \mathbb{R}^{ni \times nj \times nk} \to \mathbb{R}^{ni \times nj \times nk} \xrightarrow{Q} \mathbb{R}^{ni \times nj \times 1k}$$

ni is the number of pixels in the height, nj in the width. Our FNO is composed of 4 layers with the same structure :

$$\mathcal{G}_{\theta} = \mathcal{H}_{\theta}^{4} \circ \mathcal{H}_{\theta}^{3} \circ \mathcal{H}_{\theta}^{2} \circ \mathcal{H}_{\theta}^{1}$$

A layer is made of two sub-layers organised as followed :

$$\mathcal{H}^{\ell}_{\theta}(X) = \sigma \big( \mathcal{F}^{-1} \Big( \mathcal{F}(X) \cdot R \Big) + \mathcal{W}(X) \big)$$

where

- $\sigma$  is an activation function applied term by term on the tensors. For  $\ell = 1, 2, 3$  we choose the Relu function  $(f(x) = \max(0, x))$ . For the last layer  $\ell = 4$  we choose the GeLu function  $f(x) = x\Phi(x)$  with  $\Phi(x) = P(X \leq x)$  where  $X \sim \mathcal{N}(0, 1)$
- $\mathcal{W}$  is the bias-layer.

—  $\mathcal{F}$  the 2 dimensional Discrete Fourier transform (DFT) on the  $ni \times nj$  grid :

$$\mathcal{F}(X)_{ijk} = \sum_{i'j'} X_{i'j'k} e^{2\sqrt{-1}\pi \frac{ii'}{ni}\frac{jj'}{nj}}$$

and its inverse :

$$\mathcal{F}^{-1}(X)_{ijk} = \frac{1}{ni} \frac{1}{nj} \sum_{i'j'} X_{i'j'k} e^{-2\sqrt{-1}\pi \frac{ii'}{ni} \frac{jj'}{nj}}$$

— for our filtering task, it is sufficient to act only on the "low" frequencies. The multiplication  $\mathcal{F}(X) \cdot R$  must simply be performed on the indices in the domain :

$$[0,mi[\times [0,mj[ \cup [ni,ni-mi[\times [0,mj[$$

with mi < ni/2 and mj < nj/2. These parameters mi, mj are called : the number of Fourier modes of the filtering. Here mi = mj = 20.



$$\begin{split} X &= (f, \phi, f_x, f_y, f_{xx}, f_{yy}, \text{domain}) \\ \text{P lifts the input to a high dimensional channel space} \\ \text{Q projects the representation back to the other space} \\ R : Linear transformation applied on lower Fourier modes} \\ W : Linear transformation applied on the spatial domain \\ \sigma : \text{Activation function} \end{split}$$

— Poisson-Dirichlet on different domains :

$$\begin{cases} -\Delta u &= f, & \text{in } \Omega, \\ u &= 0, & \text{on } \Gamma, \end{cases}$$

Goal : Learn the operator mapping the force and the level-set function to the solution,

$$\mathcal{G}^{\dagger}$$
:  $(f, \phi) \mapsto w$ 

$$\phi_{(x_0,y_0,l_x,l_y,\theta)}(x,y) = -1 + \frac{((x-x_0)\cos(\theta) + (y-y_0)\sin(\theta))^2}{l_x^2} + \frac{((x-x_0)\sin(\theta) - (y-y_0)\cos(\theta))^2}{l_y^2},$$

with

$$x_{0}, y_{0} \sim \mathcal{U}([0.2, 0.8]), \quad l_{x}, l_{y} \sim \mathcal{U}([0.2, 0.45]) \quad \text{and } \theta \sim \mathcal{U}([0, \pi]).$$

$$f = 100 \exp\left(-\frac{(x-\mu_{0})^{2}+(y-\mu_{1})^{2}}{2\sigma^{2}}\right), \text{ where } \mu_{0} \text{ and } \mu_{1} \text{ are chosen uniformly on } [0.2, 0.8] \text{ and } \sigma \sim [\min(l_{x}, l_{y})2, \max(l_{x}, l_{y})]$$

- 2000 epochs of training; a batch of 64 samples is chosen on each epoch.
- Adam optimizer with an initial learning rate of  $10^{-3}$ ,
- complete dataset of size 1500, divided in a training set of size 1313 and testing set of size 187



loss function to learn :  $loss = misfit_0 + misfit_1 + misfit_2$ - Evolution of misfits on epochs of training :

$$\begin{split} \text{misfit}_{0} &= \frac{1}{N} \sum_{n=0}^{N} \frac{\|\phi_{h}^{n} \mathcal{G}_{\theta}^{\dagger}(\phi_{h}^{n}, f_{h}^{n}) - \phi_{h}^{n} w_{h}^{n}\|_{L^{2}(\Omega_{h}^{n})}^{2}}{|\Omega_{h}^{n}|^{2}}, \\ \text{misfit}_{1} &= \frac{1}{N} \sum_{n=0}^{N} \frac{\|\nabla_{x}(\phi_{h}^{n} \mathcal{G}_{\theta}^{\dagger}(\phi_{h}^{n}, f_{h}^{n})) - \nabla_{x}(\phi_{h}^{n} w_{h}^{n})\|_{L^{2}(\Omega_{h}^{n})}^{2}}{|\Omega_{h}^{n}|^{2}} \\ &+ \frac{\|\nabla_{y}(\phi_{h}^{n} \mathcal{G}_{\theta}^{\dagger}(\phi_{h}^{n}, f_{h}^{n})) - \nabla_{y}(\phi_{h}^{n} w_{h}^{n})\|_{L^{2}(\Omega_{h}^{n})}^{2}}{|\Omega_{h}^{n}|^{2}}, \\ \text{misfit}_{2} &= \frac{1}{N} \sum_{n=0}^{N} \frac{\|\nabla_{x} \nabla_{x}(\phi_{h}^{n} \mathcal{G}_{\theta}^{\dagger}(\phi_{h}^{n}, f_{h}^{n})) - \nabla_{x} \nabla_{x}(\phi_{h}^{n} w_{h}^{n})\|_{L^{2}(\Omega_{h}^{n})}^{2}}{|\Omega_{h}^{n}|^{2}} \\ &+ \frac{\|\nabla_{y} \nabla_{y}(\phi_{h}^{n} \mathcal{G}_{\theta}^{\dagger}(\phi_{h}^{n}, f_{h}^{n})) - \nabla_{y} \nabla_{y}(\phi_{h}^{n} w_{h}^{n})\|_{L^{2}(\Omega_{h}^{n})}^{2}}{|\Omega_{h}^{n}|^{2}} \\ &+ \frac{\|\nabla_{x} \nabla_{y}(\phi_{h}^{n} \mathcal{G}_{\theta}^{\dagger}(\phi_{h}^{n}, f_{h}^{n})) - \nabla_{x} \nabla_{y}(\phi_{h}^{n} w_{h}^{n})\|_{L^{2}(\Omega_{h}^{n})}^{2}}{|\Omega_{h}^{n}|^{2}}, \end{split}$$

18



interior relative residues, given by



the residues seems to converge to  $\approx 2 \times 10^{-4}$  on the validation set, whereas the  $\phi$ -FEM residues on the same sample are  $1.4 \times 10^{-5}$ 





Error introduced by the FNO : Let us look at :





Relative  $L^{\infty}$  and  $L^2$  errors on the validation set, at different steps of the training.

#### **Relative error with different methods**



#### **Computation times**

#### Case of non-parametric domains :

Let us denote  $\Omega$  the constructed domain and  $\tilde\phi$  the created function with Fourier series. The level-set  $\phi$  is given by

$$\phi = -\left( ilde{\phi} - \min_{\Omega}( ilde{\phi})
ight)|_{\Omega} + \left(\left|| ilde{\phi}| - \min_{\Omega}( ilde{\phi})
ight|
ight)|_{\Omega^c},$$

where  $\Omega^c$  is the complement of  $\Omega$  in  $(0, 1)^2$ .



## Conclusion and ongoing works

#### **Results** :

—  $\phi$ -FEM has several attractive features :

- Optimal convergence, discrete problem well conditioned, simple implementation, formulation available for any order of approximation,  $\phi$ -FEM works for several problems.
- Training neural operators could be expensive, but we have shown that after training, the FNO compute faster than finite element methods or phifem method.

#### Future works :

- $\phi$ -fem and finite differences
- Comparison with  $\phi$ -fem approach combined with CNN