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Motivation

Objectives : develop real-time, predictive digital twins for computer-aided interventions in the fields of
surgery, interventional radiology, and neuro-stimulation.

@ Image @ 3D reconstruction @ Numerical method @ Surgical navigation

e What can we do on complex geometries ?
How can we simulate the deformation of soft tissues?



Motivation

e Solving PDEs using finite element methods on non matching grids

— A simpler treatment of complex geometries, cracks, material interfaces, ...
— we can treat domain changing on iterations : Inverse problems, shape optimization
— we can treat domain changing in time : Fluid-Structure interaction, particulate flows, ...

‘> No need to remesh, .
o . : © adapt the weak formulation

> regular cells to facilitate an efficient matrix-free L L :

) ) © Conditioning of the finite element matrix

implementation



Motivation

e Combining machine learning with numerical methods
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Conventional methods Data driven methods
— solve one instance — Learn a family of PDE
— require the explicit form — data driven
— trade off on resolution — resolution invariant, mesh invariant
— slow on fine grids, fast on coarse grids — slow to train, fast to evaluate

Immersed boundary/ unfitted mesh methods may be useful in Deep Learning applications
A simple representation of the geometry is desirable if one want to learn the map

(geometry of domain) — (solution on domain)



Previous works on non matching grids

Classical fictitious domain methods Saul’'ev '63, Astra-
khantsev '78, Glowinski et al. 1990’s
Easy to implement

© poor accuracy O(Vh)
© large FE matrix and bad condition number

XFEM Moes-Bechet-Tourbier ‘06, Haslinger-Renard '09
Good condition number

© Non-classical shape functions and discontinuity in the

integrals

CutFEM Burman-Hansbo 2010-2014
Optimal accuracy
© Not straigtforward to implement : cut integrals

Shifted Boundary Method (SBM) : Main-Scovazzi '17,
Nouveau and al.
e Taylor development near the boundary
Optimal accuracy, no integrals on cut elements
& Treatment of Neumann conditions
& Require more geometrical information
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What is the idea of ¢-FEM?

Let the domain €2 and its boundary " be given by a level-set function ¢ :
Q:={¢p<0}and ' ={¢p =0}
2, only slightly larger than €2.

r:6=0 x

Tr, : »-FEM mesh
7;Lr : Cells of Ty, cut by the boundary

F} : Internal facets of T,"



What is the idea of ¢-FEM?

General procedure : —Au= fin$2, u=0on9d2

— Extend the governing equations from €2 to €25 and write down a non standard variational formulation

on the extended domain £2; without taking into account the boundary conditions on 0f2.

Vu-Vov — (Opu)v = fv
Q, o, Q,
Impose the boundary conditions using appropriate ansatz or additional variables, explicitly involving
the level set ¢ :

U = pw

Add appropriate stabilization, including the ghost penalty as in CutFEM plus a least square imposition
of the governing equation on the mesh cells near the boundary, to guarantee coerciveness/stability on
the discrete level.

The level set is known only approximately, ¢;, is the Lagrange interpolation of ¢ of order I > k + 1
Find w;, (FEM of degree k) such that

V(onwy) - V(dnzn) — (Ondnwp)dnzn + Stab.terms = fonzn + Stab.terms
€2, 082y €2,
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Q,, 02,
+oph 3 / B (Snun)] [Bn ()] + oph? 3 / Abnwn) A(dnzn)
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What is the idea of ¢-FEM?

e casy of implementation : standard shape functions, all the integrals can be computed by standard
quadrature rules on entire mesh cells and on entire boundary facets.

e Optimal convergence : in the L? norm : sub-optimal in theory, optimal in practice.
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e ¢-FEM works high polynomial orders : it suf-
fices to approximate the level set function by
piecewise polynomials of the same degree as
that used for the primal unknown.
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P> finite elements; Ps3 finite elements

e Good conditioning of the matrix : The finite
element matrix of ¢-FEM satisfies oe— L B
k(A) = [|A]2]|A7Y]2 < Ch™2 == R R ==
h h

With stabilisation. Without stabilisation
e The method works for elasticity problem, a simple fracture problem, Stokes problem and an example of

particulate flows, heat equation.
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Neural Networks : choice of FNO

e FNO uses FFT, so that the solution should be represented on a Cartesian grid

e accurate than other deep learning method, faster than conventional solvers :
In KOVACHKI et al, Neural Operator : Learning Maps Between Function Spaces (2022), the mean
relative L2 errors on meshes N x N

Networks N =85 N =141 N =211 N =421

NN 0.1716 0.1716 0.1716 0.1716
FCN 0.0253 0.0493 0.0727 0.1097
PCANN 0.0299 0.0298 0.0298 0.0299
RBM 0.0244 0.0251 0.0255 0.0259
DeepONet | 0.0476 0.0479 0.0462 0.0487
GNO 0.0346 0.0332 0.0342 0.0369
LNO 0.0520 0.0461 0.0445 —

MGNO 0.0416 0.0428 0.0428 0.0420
FNO 0.0108 0.0109 0.0109 0.0098

e it takes a step size much bigger than is allowed in numerical methods
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Neural Networks : choice of FNO

e FNO demonstrate very good efficiency for different settings : for example Navier Stokes :

Initial Vortrcrgz t=20

L -' \\‘ |.m‘

e the network can perform multi-resolution
e the training can be made on many PDEs with the same underlying architecture.

12



Neural Networks : choice of FNO

The FNO is a parametric application :
gg : Rnixnjx3 i Rm’xnjxnk: N ijxnjxnk 8} Rnixnjxl

nt is the number of pixels in the height, nj in the width.
Our FNO is composed of 4 layers with the same structure :

Gy = Hy o Hg o Hy o Hy
A layer is made of two sub-layers organised as followed :

HE(X) = o(F? <]—"(X) - R) + W(X))

where
— o is an activation function applied term by term on the tensors. For £ = 1,2,3 we choose the
Relu function (f(x) = max(0,z)) . For the last layer £ = 4 we choose the GelLu function

f(z) = zd(x) with () = P(X < x) where X ~ N(0,1)
— WV is the bias-layer.
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Neural Networks : choice of FNO

— F the 2 dimensional Discrete Fourier transform (DFT) on the ni x nj grid :

2/~ 1pii
F(X)ijw = ZXi’j’ke i
,l'lj/
and its inverse :
11 il i’
—1 2/~
F (X = —— ) Xijre i
ning <
iJ
— for our filtering task, it is sufficient to act only on the "low” frequencies. The multiplication 7(X) - R
must simply be performed on the indices in the domain :

[0,mi[ x [0,mj[ ] [ni,ni—mi[ x [0,mj]

with mi < ni/2 and mj < nj/2. These parameters mi, mj are called : the number of Fourier
modes of the filtering. Here m: = mj = 20.
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Neural Networks : choice of FNO

¢ <0in €, ¢ =0 on 91 i :

X — (f7 (ba f:If: fy7 fxxa fyy> domain)

P lifts the input to a high dimensional channel space

Q projects the representation back to the other space

R : Linear transformation applied on lower Fourier modes
W : Linear transformation applied on the spatial domain
o : Activation function
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Neural Networks

— Poisson-Dirichlet on different domains :

{—Au =f, inS2,

U =0, onl,

Goal : Learn the operator mapping the force and the level-set function to the solution,

G (f,d) =~ w

((z — wo) cos(f) + (y — yo) sin(6))?
+ E
4 (&= 20)sin(0) — (y — yo) cos(0))?

2 Y
ly

¢(x03y0al.wly,9) (:'U7y) — _1

with
xo, yo ~U([0.2,0.8]), ., I, ~U([0.2,0.45]) and & ~U([O,7]).

f = 100exp (—(x_“°)2+(y_“1)2>, where po and @1 are chosen uniformly on [0.2,0.8] and o ~

2072

[Min(lz,1,)2, max(lz,1,)]
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Neural Networks

— 2000 epochs of training; a batch of 64 samples is chosen on each epoch.
— Adam optimizer with an initial learning rate of 1073,
— complete dataset of size 1500, divided in a training set of size 1313 and testing set of size 187
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Neural Networks

loss function to learn : loss = mis fitg + misfit1 + misfito
— Evolution of misfits on epochs of training :

1
i — T |
misfitg an:% |QZ|2

1 L IVe(@RGH(R 1)) = Ve dhwi) 1o
misfit;] = — E
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i 2P ’
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1
it — -
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Neural Networks

interior relative residues, given by

1 N
’T’QZNZ

n=1

(A (GRGH( R, 1) + £ /125113 o
L7 /125122y '

finite_elem:1.4e-05

10-2- —— interior
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the residues seems to converge to &~ 2 x 10~% on the validation set, whereas the ¢-FEM residues on
the same sample are 1.4 x 10>
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Neural Networks
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Neural Networks
Error introduced by the FNO : Let us look at :

pnwn — ¢nGh(dn, F)lI3 o,
|@Urer]

2
0,2,

-
]
.

Relative error

10~3
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| | | | | | | |
100 200 500 750 1000 1250 1500 2000
Epochs

Relative L and L2 errors on the validation set, at different steps of the training.
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Computation times

—+— FNO
+— ¢-FEM

102 1= Standard FEM
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Relative error with different methods
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Case of non-parametric domains :

Neural Networks

Let us denote 2 the constructed domain and ¢ the created function with Fourier series. The level-set ¢
is given by

Exact solution

02 04 06 08 |

o=—(3-min@®) e+ (|81 - min@®) Ia-,

where Q€ is the complement of €2 in (0, 1)2.
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Conclusion and ongoing works

Results :

— @-FEM has several attractive features :
Optimal convergence, discrete problem well conditioned, simple implementation, formulation available
for any order of approximation, ¢-FEM works for several problems.

— Training neural operators could be expensive, but we have shown that after training, the FNO compute
faster than finite element methods or phifem method.

Future works :
— ¢-fem and finite differences
— Comparison with ¢-fem approach combined with CNN
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