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Motivation

Objectives : develop real-time, predictive digital twins for computer-aided interventions in the fields of
surgery, interventional radiology, and neuro-stimulation.

• What can we do on complex geometries ?
How can we simulate the deformation of soft tissues ?
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Motivation

• Solving PDEs using finite element methods on non matching grids

— A simpler treatment of complex geometries, cracks, material interfaces, ...
— we can treat domain changing on iterations : Inverse problems, shape optimization
— we can treat domain changing in time : Fluid-Structure interaction, particulate flows, ...

⊕ No need to remesh,
⊕ regular cells to facilitate an efficient matrix-free
implementation

	 adapt the weak formulation
	 Conditioning of the finite element matrix
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Motivation

• Combining machine learning with numerical methods

Conventional methods
— solve one instance
— require the explicit form
— trade off on resolution
— slow on fine grids, fast on coarse grids

Data driven methods
— Learn a family of PDE
— data driven
— resolution invariant, mesh invariant
— slow to train, fast to evaluate

Immersed boundary/ unfitted mesh methods may be useful in Deep Learning applications
A simple representation of the geometry is desirable if one want to learn the map

(geometry of domain) → (solution on domain)
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Previous works on non matching grids

— Classical fictitious domain methods Saul’ev ’63, Astra-
khantsev ’78, Glowinski et al. 1990’s
⊕ Easy to implement
	 poor accuracy O(

√
h)

	 large FE matrix and bad condition number

— XFEM Moes-Bechet-Tourbier ’06, Haslinger-Renard ’09
⊕ Good condition number
	 Non-classical shape functions and discontinuity in the
integrals

— CutFEM Burman-Hansbo 2010-2014
⊕ Optimal accuracy
	 Not straigtforward to implement : cut integrals

— Shifted Boundary Method (SBM) : Main-Scovazzi ’17,
Nouveau and al.
• Taylor development near the boundary
⊕ Optimal accuracy, no integrals on cut elements
	 Treatment of Neumann conditions
	 Require more geometrical information
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What is the idea of φ-FEM ?

Let the domain Ω and its boundary Γ be given by a level-set function φ :

Ω := {φ < 0} and Γ = {φ = 0}
Ωh only slightly larger than Ω.

Th : φ-FEM mesh
T Γ
h : Cells of Th cut by the boundary

FΓ
h : Internal facets of T Γ

h
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What is the idea of φ-FEM ?

General procedure : −∆u = f in Ω, u = 0 on ∂Ω

— Extend the governing equations from Ω to Ωh and write down a non standard variational formulation
on the extended domain Ωh without taking into account the boundary conditions on ∂Ω.∫

Ωh

∇u · ∇v −
∫
∂Ωh

(∂nu)v =

∫
Ωh

fv

— Impose the boundary conditions using appropriate ansatz or additional variables, explicitly involving
the level set φ :

u = φw

— Add appropriate stabilization, including the ghost penalty as in CutFEM plus a least square imposition
of the governing equation on the mesh cells near the boundary, to guarantee coerciveness/stability on
the discrete level.

— The level set is known only approximately, φh is the Lagrange interpolation of φ of order l ≥ k + 1
— Find wh (FEM of degree k) such that∫

Ωh

∇(φhwh) · ∇(φhzh)−
∫
∂Ωh

(∂nφhwh)φhzh + Stab.terms =

∫
Ωh

fφhzh + Stab.terms
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What is the idea of φ-FEM ?

General procedure : −∆u = f in Ω, u = 0 on ∂Ω

— Extend the governing equations from Ω to Ωh and write down a non standard variational formulation
on the extended domain Ωh without taking into account the boundary conditions on ∂Ω.∫

Ωh

∇u · ∇v −
∫
∂Ωh

(∂nu)v =

∫
Ωh

fv

— Impose the boundary conditions using appropriate ansatz or additional variables, explicitly involving
the level set φ :

u = φw

— Add appropriate stabilization, including the ghost penalty as in CutFEM plus a least square imposition
of the governing equation on the mesh cells near the boundary, to guarantee coerciveness/stability on
the discrete level.

— The level set is known only approximately, φh is the Lagrange interpolation of φ of order l ≥ k + 1
— Find wh (FEM of degree k) such that∫

Ωh

∇(φhwh) · ∇(φhzh)−
∫
∂Ωh

(∂nφhwh)φhzh

+ σDh
∑
E∈FΓ

h

∫
E

[∂n(φhwh)] [∂n(φhzh)] + σDh
2
∑
T∈T Γ

h

∫
T

∆(φhwh)∆(φhzh)

=

∫
Ωh

fφhzh +−σDh2
∑
T∈T Γ

h

∫
T

f∆(φhzh)
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What is the idea of φ-FEM ?

• easy of implementation : standard shape functions, all the integrals can be computed by standard
quadrature rules on entire mesh cells and on entire boundary facets.

• Optimal convergence : in the L2 norm : sub-optimal in theory, optimal in practice.

• φ-FEM works high polynomial orders : it suf-
fices to approximate the level set function by
piecewise polynomials of the same degree as
that used for the primal unknown.

P2 finite elements ; P3 finite elements

• Good conditioning of the matrix : The finite
element matrix of φ-FEM satisfies

κ(A) := ‖A‖2‖A−1‖2 ≤ Ch−2

With stabilisation. Without stabilisation

• The method works for elasticity problem, a simple fracture problem, Stokes problem and an example of

particulate flows, heat equation.
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Neural Networks : choice of FNO

• FNO uses FFT, so that the solution should be represented on a Cartesian grid

• accurate than other deep learning method, faster than conventional solvers :
In KOVACHKI et al, Neural Operator : Learning Maps Between Function Spaces (2022), the mean
relative L2 errors on meshes N ×N

• it takes a step size much bigger than is allowed in numerical methods
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Neural Networks : choice of FNO

• FNO demonstrate very good efficiency for different settings : for example Navier Stokes :

• the network can perform multi-resolution
• the training can be made on many PDEs with the same underlying architecture.

12



Neural Networks : choice of FNO

The FNO is a parametric application :

G†θ : Rni×nj×3 P−→ Rni×nj×nk → Rni×nj×nk Q−→ Rni×nj×1

ni is the number of pixels in the height, nj in the width.
Our FNO is composed of 4 layers with the same structure :

Gθ = H4
θ ◦ H3

θ ◦ H2
θ ◦ H1

θ

A layer is made of two sub-layers organised as followed :

H`
θ(X) = σ

(
F−1

(
F(X) ·R

)
+W(X)

)
where
— σ is an activation function applied term by term on the tensors. For ` = 1,2,3 we choose the

Relu function (f(x) = max(0, x)) . For the last layer ` = 4 we choose the GeLu function
f(x) = xΦ(x) with Φ(x) = P (X 6 x) where X ∼ N (0,1)

— W is the bias-layer.

13



Neural Networks : choice of FNO

— F the 2 dimensional Discrete Fourier transform (DFT) on the ni× nj grid :

F(X)ijk =
∑
i′j ′

Xi′j ′ke
2
√
−1π ii′

ni

jj′

nj

and its inverse :

F−1(X)ijk =
1

ni

1

nj

∑
i′j ′

Xi′j ′ke
−2
√
−1π ii′

ni

jj′

nj

— for our filtering task, it is sufficient to act only on the ”low”frequencies. The multiplication F(X) ·R
must simply be performed on the indices in the domain :

[0,mi[ × [0,mj[
⋃

[ni, ni−mi[ × [0,mj[

with mi < ni/2 and mj < nj/2. These parameters mi,mj are called : the number of Fourier
modes of the filtering. Here mi = mj = 20.

14



Neural Networks : choice of FNO

X = (f, φ, fx, fy, fxx, fyy, domain)
P lifts the input to a high dimensional channel space
Q projects the representation back to the other space
R : Linear transformation applied on lower Fourier modes
W : Linear transformation applied on the spatial domain
σ : Activation function
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Neural Networks

— Poisson-Dirichlet on different domains :{
−∆u = f , in Ω ,

u = 0 , on Γ ,

Goal : Learn the operator mapping the force and the level-set function to the solution,

G† : (f, φ) 7→ w

φ(x0,y0,lx,ly,θ)(x, y) = −1 +
((x− x0) cos(θ) + (y − y0) sin(θ))2

l2x

+
((x− x0) sin(θ)− (y − y0) cos(θ))2

l2y
,

with

x0, y0 ∼ U([0.2,0.8]) , lx, ly ∼ U([0.2,0.45]) and θ ∼ U([0, π]) .

f = 100 exp
(
−(x−µ0)2+(y−µ1)2

2σ2

)
, where µ0 and µ1 are chosen uniformly on [0.2,0.8] and σ ∼

[min(lx, ly)2,max(lx, ly)]
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Neural Networks

— 2000 epochs of training ; a batch of 64 samples is chosen on each epoch.
— Adam optimizer with an initial learning rate of 10−3,
— complete dataset of size 1500, divided in a training set of size 1313 and testing set of size 187
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Neural Networks

loss function to learn : loss = misfit0 +misfit1 +misfit2
— Evolution of misfits on epochs of training :

misfit0 =
1

N

N∑
n=0

‖φnhG
†
θ(φ

n
h, f

n
h )− φnhwnh‖2

L2(Ωn
h)

|Ωn
h|2

,

misfit1 =
1

N

N∑
n=0

‖∇x(φnhG
†
θ(φ

n
h, f

n
h ))−∇x(φnhwnh)‖2

L2(Ωn
h)

|Ωn
h|2

+
‖∇y(φnhG

†
θ(φ

n
h, f

n
h ))−∇y(φnhwnh)‖2

L2(Ωn
h)

|Ωn
h|2

,

misfit2 =
1

N

N∑
n=0

‖∇x∇x(φnhG
†
θ(φ

n
h, f

n
h ))−∇x∇x(φnhwnh)‖2

L2(Ωn
h)

|Ωn
h|2

+
‖∇y∇y(φnhG

†
θ(φ

n
h, f

n
h ))−∇y∇y(φnhwnh)‖2

L2(Ωn
h)

|Ωn
h|2

+
‖∇x∇y(φnhG

†
θ(φ

n
h, f

n
h ))−∇x∇y(φnhwnh)‖2

L2(Ωn
h)

|Ωn
h|2

,
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Neural Networks
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Neural Networks

interior relative residues, given by

rθ =
1

N

N∑
n=1

‖(∆(φnhG
†
θ(φ

n
h, f

n
h )) + fnh )/|Ωn

h|‖2
L2(Ωn

h)

‖fnh /|Ωn
h|‖2

L2(Ωn
h)

.

the residues seems to converge to ≈ 2× 10−4 on the validation set, whereas the φ-FEM residues on
the same sample are 1.4× 10−5
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Neural Networks
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Neural Networks
Error introduced by the FNO : Let us look at :

‖φhwh − φhG†θ(φh, fh)‖2
0,Ωh

‖φUref‖2
0,Ωh

Relative L∞ and L2 errors on the validation set, at different steps of the training.
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Neural Networks

Computation times
Relative error with different methods
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Neural Networks

Case of non-parametric domains :

Let us denote Ω the constructed domain and φ̃ the created function with Fourier series. The level-set φ
is given by

φ = −
(
φ̃−min

Ω
(φ̃)
)
|Ω +

(∣∣∣|φ̃| −min
Ω

(φ̃)
∣∣∣) |Ωc ,

where Ωc is the complement of Ω in (0,1)2.

24



Conclusion and ongoing works

Results :
— φ-FEM has several attractive features :

Optimal convergence, discrete problem well conditioned, simple implementation, formulation available
for any order of approximation, φ-FEM works for several problems.

— Training neural operators could be expensive, but we have shown that after training, the FNO compute
faster than finite element methods or phifem method.

Future works :
— φ-fem and finite differences
— Comparison with φ-fem approach combined with CNN
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