## 

#### **OPTIMAL CONTROL OF SOLAR SAILS** Alesia Herasimenka Université Côte d'Azur, CNRS, Inria, LJAD, France ESA contract no 4000134950/21/NL/GLC/my





#### Non-ideal sail: a cone-constrained control problem



# set of all possible forces convex cone



#### How to optimally change an orbit of a non-ideal sail?





How to generate any  $x(t_0) \longrightarrow x(t_f)$ ?



#### Outline







1. Dynamics of the system

2. Necessary conditions for optimality

3. Algorithm for optimal control of solar sails

![](_page_4_Picture_7.jpeg)

#### 1. Force components of solar sail

f

$$f_{SRP} = f_{absorptive} + f_{sp}$$

![](_page_5_Picture_2.jpeg)

![](_page_5_Picture_3.jpeg)

![](_page_5_Picture_4.jpeg)

pecular reflection  $+ f_{diffuse}$  reflection

![](_page_5_Picture_6.jpeg)

#### 1. Control set

![](_page_6_Picture_2.jpeg)

![](_page_6_Picture_3.jpeg)

## **1.** Parametrization of the control set

![](_page_7_Picture_1.jpeg)

![](_page_7_Figure_3.jpeg)

 $\rho, s \in [0,1]$  portion of specular, diffuse reflection

![](_page_7_Picture_5.jpeg)

## 1. Dynamical system

![](_page_8_Picture_1.jpeg)

 $\dot{x} = F^0(x) + \varepsilon \sum u_i F^i(x), \quad u \in \mathcal{U}, \quad i = 1, 2, 3$ 

with x = (I, f),  $I \in M, f \in \mathbb{S}^1$ ,  $F^0, F^i$  given by Gauss variational equations

#### **Assumptions**: No eclipses Sun motion neglected over one orbit SRP is the only perturbation

![](_page_8_Picture_6.jpeg)

![](_page_8_Picture_7.jpeg)

## 2. Optimal control problem

 $\frac{\mathrm{d}\delta I}{\mathrm{d}f} = \varepsilon F(\bar{I},f) u$ 

 $\max \, \delta I(2\pi) \cdot d_I \qquad \text{subject to}$  $u(f) \in \mathcal{U}$ 

$$\delta I(2\pi) = \varepsilon \int_{\mathbb{S}^1} \sum_{i=1}^3 u_i F_i(\bar{I}, f) \, \mathrm{d}f$$
$$\delta I(0) = 0, \qquad \delta I(2\pi) \parallel d_I$$

## 2. Necessary conditions for optimality

 $H(\bar{I}, f, p_{\delta I}, u) = \varepsilon \, u \, p_{\delta I} F(\bar{I}, f)$ 

 $u^* = \arg \max_{u \in \mathcal{U}} H = \arg \max_{u \in \mathcal{U}} \left( u \cdot p_{\delta I} F(\overline{I}, f) \right)$ 

## 2. Geometrical interpretation of PMP

Polar cone *K*<sup>o</sup>

 $p_{\delta I} F \in K^o \to u_i^* = 0$ 

#### $u^* = \arg \max_{u \in \mathcal{U}} \left( u \cdot p_{\delta I} F(\overline{I}, f) \right)$

![](_page_11_Figure_5.jpeg)

![](_page_11_Picture_6.jpeg)

### 2. What is the structure of the solution?

#### Shooting variable: $p_{\delta I}$

Polar cone  $K^0$   $p_{\delta I} F$ 

## Switches between bangs and zeros: $p_{\delta I} F(\overline{I}, f) \in \partial K^o \iff \theta = \alpha + \frac{\pi}{2}$

![](_page_12_Picture_5.jpeg)

![](_page_12_Picture_6.jpeg)

### 2. What is the structure of the solution?

Shooting variable:  $p_{\delta I}$ 

constant

![](_page_13_Figure_4.jpeg)

max number of roots =  $8 \iff \max$  number of bangs = 5

![](_page_13_Figure_6.jpeg)

## 2. What is the structure of the solution?

Shooting variable:  $(p_{\delta I})$  Initial guess ?

constant

![](_page_14_Figure_4.jpeg)

- Switches between bangs and zeros:  $p_{\delta I} F(\overline{I}, f) \in \partial K^0 \iff \theta = \alpha + \frac{\pi}{2}$ trigonometric polynomial of degree 4

  - max number of roots =  $8 \iff \max$  number of bangs = 5

## 2. Convexification of the control set $u \in \mathcal{U} \subset K_{\alpha} := \operatorname{cone}(\mathcal{U})$ angle of set of all orientation possible forces convex

cone

![](_page_15_Picture_1.jpeg)

![](_page_15_Picture_2.jpeg)

#### 2. Reliable initial guess from convex optimization

![](_page_16_Picture_1.jpeg)

max  $u(f) \in \partial K_{\alpha}$ 

$$\delta I(2\pi) = \varepsilon \int_{\mathbb{S}^1} \sum_{i=1}^3 u_i F_i(I, f) \, \mathrm{d}f$$
  
$$\delta I(0) = 0, \qquad \delta I(2\pi) \parallel d_I$$

![](_page_16_Picture_5.jpeg)

![](_page_16_Picture_6.jpeg)

#### 2. Numerical solution of the semi-infinite problem

#### Parametrization of the cone

Controls are combinations of

generators 
$$u(f) = \sum_{j} \gamma_{j}(f) V_{j}$$

 $\gamma_j(f) \ge 0, f \in \mathbb{S}^1$ 

**Fourier series** of the dynamics and  $\gamma_i(f)$  in *f* 

![](_page_17_Figure_6.jpeg)

![](_page_17_Picture_7.jpeg)

#### 2. Numerical solution of the semi-infinite problem

#### Constraint $\gamma_i(f) \ge 0 \longrightarrow$ positive polynomials [Nesterov, 2000]

Leverage on formalism of squared functional systems

LMI

convex programming

![](_page_18_Picture_8.jpeg)

#### 2. Possible solutions

![](_page_19_Figure_1.jpeg)

Convex cone

Real control set

![](_page_19_Picture_5.jpeg)

## 3. Algorithm of solution of the OCP

1. Convex optimization: structure of the control, initial guess for the co-state.

2. Multiple shooting for a given control structure, using *control toolbox*.

3. Homotopy to the real control set.

https://ct.gitlabpages.inria.fr/gallery/solarsail/solarsail-simple-version.html

![](_page_20_Picture_5.jpeg)

## 4. Case study 1

Increase of eccentricity

![](_page_21_Figure_2.jpeg)

![](_page_21_Figure_3.jpeg)

![](_page_21_Picture_4.jpeg)

#### 4. Change of structure between initial guess / solution

![](_page_22_Figure_1.jpeg)

## set of all possible forces convex cone

![](_page_22_Picture_3.jpeg)

## 4. Updated algorithm

1. Initial guess (co-state + structure)

2. Multiple shooting on bounded cone

3. Homotopy to the real control set

4. Callback to detect change of structure + switch function to initialize new structure

![](_page_23_Picture_6.jpeg)

![](_page_23_Picture_7.jpeg)

## 4. Case study 2

Increase of inclination

![](_page_24_Figure_2.jpeg)

![](_page_24_Figure_3.jpeg)

![](_page_24_Picture_4.jpeg)

#### 4. Conclusions

Optimal control algorithm allowing to

change the orbit

![](_page_25_Picture_4.jpeg)

![](_page_25_Picture_5.jpeg)

## 

#### **OPTIMAL CONTROL OF SOLAR SAILS** Alesia Herasimenka Université Côte d'Azur, CNRS, Inria, LJAD, France ESA contract no 4000134950/21/NL/GLC/my

![](_page_26_Picture_4.jpeg)

## 1. Dynamical system

$$\begin{cases} \frac{\mathrm{d}I}{\mathrm{d}t} = \varepsilon \sqrt{\frac{a\left(1-e^2\right)}{\mu}}G(I,f) u\\ \frac{\mathrm{d}f}{\mathrm{d}t} = \omega(I,f) + \varepsilon \sqrt{\frac{a\left(1-e^2\right)}{\mu}}G_f(I,f) u\end{cases}$$

$$\omega(I,f) = \sqrt{\frac{\mu}{a(1-e^2)^3}}(1+e\cos f)^2,$$

$$G(I,f) = \begin{pmatrix} 0 & 0 & \frac{\sin(\omega+f)}{\sin i (1+e\cos f)} \\ 0 & 0 & \frac{\cos(\omega+f)}{1+e\cos f} \\ \frac{-\cos f}{e} & \frac{2+e\cos f}{1+e\cos f} \frac{\sin f}{e} & \frac{\cos(\omega+f)}{1+e\cos f} \\ \frac{2ae}{1-e^2} \sin f & \frac{2ae}{1-e^2} (1+e\cos f) & 0 \\ \sin f & \frac{e\cos^2 f + 2\cos f + e}{1+e\cos f} & 0 \end{pmatrix}$$

$$G_f(I,f) = \left(\frac{\cos f}{e} - \frac{2 + e\cos f}{1 + e\cos f}\frac{\sin f}{e} - 0\right)$$

![](_page_27_Picture_5.jpeg)

## 1. Dynamical system

#### $I := \bar{I}$

 $\frac{\mathrm{d}I}{\mathrm{d}f} = \frac{\varepsilon}{\omega(\bar{I},f)} \sqrt{\frac{\bar{a}\left(1-\frac{\bar{a}}{\bar{\mu}}\right)}{\bar{\mu}}}$ 

 $\delta I$ 

$$\frac{\mathrm{d}\delta I}{\mathrm{d}f} = \frac{\varepsilon}{\omega(\bar{I},f)} \sqrt{\frac{\bar{a}\left(1-\bar{e}^2\right)}{\bar{\mu}}} G(\bar{I},f) u(f)$$

$$\frac{\mathrm{d}f}{\mathrm{d}t} = \omega(\bar{I}, f)$$

$$\frac{\bar{a}\left(1-\bar{e}^2\right)}{\bar{\mu}}G(\bar{I},f)u(f)$$

$$= I - I_0$$

![](_page_28_Picture_9.jpeg)

![](_page_29_Figure_0.jpeg)

![](_page_29_Figure_1.jpeg)