

Bore propagation in channels with sloping banks: numerical and asymptotic analysis

M. Ricchiuto

Centre Inria de l'Université de Bordeaux, Team CARDAMOM

https://team.inria.fr/cardamom/

(naío-

du 22 au 26 Mai 2023

Bore propagation in channels with sloping banks: numerical and asymptotic analysis

Joint work with:

P. Bonneton (EPOC), R. Chassagne (LEGI/IRSTEA),

A.G. Filippini (BRGM/R3C), M. Kazolea (Inria/CARDAMOM)

EPOC

naí

Intro

Bore propagation in channels with sloping banks: numerical and asymptotic analysis

Saint Pardon, Dordogne river

https://vimeo.com/106090912, Jean-Marc Chauvet, Septembre 2014

Introduction

Tidal bores

Severn River - England

Severn River - England

Gironde - France

Qiantang River - China

Introduction

Tsunami bores

Naka river at Hitachinaka city, Japan 2011 Tohoku Tsunami

> LIVE MMK WORLD Bloomberg

Tidal bores bear striking similarity to tsunami bores, and bores generated in laboratory experiments

Sunaoshi River in Tagajo city, Japan 7.4 earthquake 21/11/2016

Sendai bay, Japan 2011 Tohoku Tsunami

Low Fr transition in Seine and Gironde: the unseen Mascaret

3 field campaigns :

a unique long-term high-frequency database

Bonneton et al, Comptes Rendus Geoscience, 2012Bonneton et al, J. Geophysical Research - Oceans, 2015

Introduction

Field studies: tidal bores

1.

1.a Undular bores in rectangular channels : non-linearity vs dispersion1.b Favre experiments in trapezoidal channels: low Froude transition

2.

2.a Modelling: asymptotic weakly nonlinear dispersive models2.b Numerical approximation in multi-D2.c Simulation results

3.

3.a Main ansatz

- 3.b Asymptotic analysis
- 3.c Physical validation
- 4. Conclusion/perspectives

Nonlinearity vs dispersion

Shallow water equations (hydrostatic, shallow limit)

$$\partial_t h + \partial_x (hu) = 0$$

 $\partial_t (hu) + \partial_x (hu^2 + gh^2/2) = 0$

Bores/Ressauts

<u>Bore</u>: positive surge or hydraulic jump in translation

Shallow water equations (hydrostatic, shallow limit) 1. hyperbolic

$$\partial_t \begin{pmatrix} h \\ hu \end{pmatrix} + A \partial_x \begin{pmatrix} h \\ hu \end{pmatrix} = 0$$
$$A = R \operatorname{diag}(u - c, u + c) R^{-1}, \quad c = \sqrt{gh}$$

Shallow water equations (hydrostatic, shallow limit)

- 1. hyperbolic
- 2. mathematical entropy (energy)

Shallow water equations (hydrostatic, shallow limit)

- 1. hyperbolic
- 2. mathematical entropy (energy)
- 3. discontinuities (bores): Rankine-Hugoniot conditions

Conservation (Mass and momentum)

$$C_B(h_2 - h_1) = (h_2 u_2 - h_1 u_1)$$
$$C_B(h_2 u_2 - h_1 u_1) = (h_2 u_2^2 - h_1 u_1^2 + g h_2^2 / 2 - g h_1^2 / 2)$$

Shallow water equations (hydrostatic, shallow limit)

- 1. hyperbolic
- 2. mathematical entropy (energy)
- 3. discontinuities (bores): Rankine-Hugoniot conditions

Conservation (Mass and momentum)

$$C_B(h_2 - h_1) = (h_2 u_2 - h_1 u_1)$$
$$C_B(h_2 u_2 - h_1 u_1) = (h_2 u_2^2 - h_1 u_1^2 + g h_2^2 / 2 - g h_1^2 / 2)$$

Shallow water equations (hydrostatic, shallow limit)

- 1. hyperbolic
- 2. mathematical entropy (energy)
- 3. discontinuities (bores): Rankine-Hugoniot conditions

Conservation (Mass and momentum)

$$Fr := \frac{u_1 - C_B}{\sqrt{gh_1}} \quad \Rightarrow \quad C_B \equiv Fr$$

Bore strength

$$\frac{h_2}{h_1} = \frac{\sqrt{1+8Fr^2}-1}{2} \Rightarrow \quad \frac{h_2}{h_1} \equiv Fr$$

Shallow water equations (hydrostatic, shallow limit)

- 1. hyperbolic
- 2. mathematical entropy (energy)
- 3. discontinuities (bores): Rankine-Hugoniot conditions

Conservation (Mass and momentum) and

Dissipation (Energy/entropy)

$$C_B(h_2 - h_1) = (h_2 u_2 - h_1 u_1)$$
$$C_B(h_2 u_2 - h_1 u_1) = (h_2 u_2^2 - h_1 u_1^2 + g h_2^2 / 2 - g h_1^2 / 2)$$

$$D_B := C_B(E_2 - E_1) - (F_{E2} - F_{E1}) = -\frac{g}{4}\sqrt{\frac{g\bar{h}}{h_1h_2}(h_2 - h_1)^3} < 0$$

Shallow water equations (hydrostatic, shallow limit)

- 1. hyperbolic
- 2. mathematical entropy (energy)
- 3. discontinuities (bores): Rankine-Hugoniot conditions
- 4. linear propagation characteristics

$$\partial_t h + \partial_x (hu) = 0$$

 $\partial_t (hu) + \partial_x (hu^2 + gh^2/2) = 0$

Shallow water equations (hydrostatic, shallow limit)

- 1. hyperbolic
- 2. mathematical entropy (energy)
- 3. discontinuities (bores): Rankine-Hugoniot conditions
- 4. linear propagation characteristics

Linearized eq.s

$$h = h_0 + \zeta$$

 $\zeta \ll h_0$

$$\partial_t \zeta + h_0 \partial_x u = 0$$
$$\partial_t u + g \partial_x \zeta = 0$$

Shallow water equations (hydrostatic, shallow limit)

- 1. hyperbolic
- 2. mathematical entropy (energy)
- 3. discontinuities (bores): Rankine-Hugoniot conditions
- 4. linear propagation characteristics

Linearized eq.s Fourier mode

$$\zeta = \zeta^* e^{i(\kappa x + \nu t)}$$
$$u = u^* e^{i(\kappa x + \nu t)}$$
$$\nu = \omega + i\sigma$$

 $\chi = rac{2\pi}{\lambda}$ wavenumber

$$\partial_t \zeta + h_0 \partial_x u = 0$$

 $\partial_t u + g \partial_x \zeta = 0$

Shallow water equations (hydrostatic, shallow limit)

- 1. hyperbolic
- 2. mathematical entropy (energy)
- 3. discontinuities (bores): Rankine-Hugoniot conditions
- 4. linear propagation characteristics

Linearized eq.s

Fourier mode

$$\zeta = \zeta^* e^{i\kappa(x \pm c_0 t)}$$
$$u = u^* e^{i\kappa(x \pm c_0 t)}$$

- a) No damping
- b) Constant celerity c_0

$$\omega = \pm \kappa c_0 \,, \ \ \sigma = \ 0$$

 $c_0 = \sqrt{g h_0}$

In fluid dynamics, **dispersion** of water **waves** generally refers to frequency **dispersion**, which means that **waves** of different wavelengths travel at different phase speeds. Water **waves**, in this context, are **waves** propagating on the water surface, with gravity and surface tension as the restoring forces.

Dispersion (water waves) - Wikipedia https://en.wikipedia.org/wiki/Dispersion_(water_waves)

$$\zeta = \zeta^* \mathrm{e}^{\mathrm{i}\kappa(x - \mathbf{c}(\kappa)t)}$$

Euler equations (Airy theory)

$$\nabla \cdot \vec{\mathbf{v}} = 0$$

$$\partial_t \vec{\mathbf{v}} + (\vec{\mathbf{v}} \cdot \nabla) \vec{\mathbf{v}} + \nabla \tilde{p} = -\mathbf{g} \vec{\mathbf{1}}_z$$

$$\partial_t \zeta + \mathbf{v}_x \partial_x \zeta = \mathbf{v}_z \qquad z = \zeta$$

$$\tilde{p} = 0 \qquad z = \zeta$$

$$\mathbf{v}_z = 0 \qquad z = -h_0$$

$$\zeta = \zeta^* \mathrm{e}^{\mathrm{i}\kappa(x - \boldsymbol{c}(\kappa)t)}$$

Non-linear potential equations

$$\zeta = \zeta^* \mathrm{e}^{\mathrm{i}\kappa(x - \boldsymbol{c}(\kappa)t)}$$

Euler equations (Airy theory)

 $\partial_z \Phi = 0$ $z = -h_0$

 $\mathbf{\uparrow} \zeta \ll h_0$ z h_0 **→** *X*

Linear potential equations

 $\nabla \zeta \|$

 $abla \Phi \|$

etc

 $\ll 1$

Euler equations (Airy theory)

 $\partial_t \zeta = \partial_z \Phi \qquad z = \zeta$ $\partial_z \Phi = 0 \qquad z = -h_0$

Linear potential equations

$$c^2(\kappa) = gh_0 rac{ extsf{tanh}(\kappa h_0)}{\kappa h_0}$$

$$\zeta = \zeta^* \mathrm{e}^{\mathrm{i}\kappa(x - \boldsymbol{c}(\kappa)t)}$$

Linear potential equations

1.0

$$\zeta = \zeta^* \mathrm{e}^{\mathrm{i}\kappa(x - \mathbf{c}(\kappa)t)}$$

Stoker, John Wiley & Sons, 1992

Bores in rectangular channels (1D/no banks)

Bores in rectangular channels (1D/no banks)

□ <u>Mathematical and physical theories</u>:

Rayleigh 1914, Lemoine 1948, Benjamin & Lighthill 1954, Serre 1954, Johnson 1970, Gurevich & Pitaevskii 1973, El et al. 2006, Congy et al 2021,

and many others

□ <u>Laboratory experiments:</u>

Favre 1935, Sandover and Zienkiewics 1957, Bennet & Cunge 1971, Treske 1994, Chanson 1996 & 2009, Soares Frazao and Zech 2002, Simon 2013, Furgerot 2014, David et al. 2014, and many others ...

Numerical simulations:

Peregrine 1966, Wei et al. 1995, Soares Frazao and Zech 2002, Lubin et al. 2010, Pan & Lu 2011, Tissier et al. 2011, Simon 2013, Filippini et al. 2019, and many others ...

Experiments in rectangular channels (no banks)

classical undular or "dispersive bore" or "Favre wave" Favre, Dunod, 1935

Treske, J. Hydraulic Research, 1994

$$F_{t2} > Fr > 1$$
 F_{t2} $Fr > F_{t2}$

Nonlinearity vs dispersion

Qiantang River - China

Kampar River - Sumatra

annels (no banks)

 F_{t2}

Favre, Dunod, 1935

Treske, J. Hydraulic Research, 1994

Experiments in rectangular channels (no banks)

Favre, Dunod, 1935 **Treske,** J. Hydraulic Research, 1994

Experiments in rectangular channels (no banks)

Favre, Dunod, 1935

Fr

Treske, J. Hydraulic Research, 1994

Some physical insight: Lemoine analogy

Lemoine, La Houille Blanche, 1948

Some physical insight: Lemoine analogy

Lemoine, La Houille Blanche, 1948

1. Secondary waves conserve mass/momentum

2. The undular front moves at the speed corresponding to conservation

3. The energy normally dissipated goes into the secondary waves

Nonlinearity vs dispersion

Lemoine analogy

Bore:

given the upstream/downstream conditions and using the jump conditions:

Water waves:

dispersion relation based on the linearized Euler equations (Airy theory)

$$C_B = C_B(Fr) = C_B(h_2/h_1)$$

$$C = C(\lambda) = \sqrt{\frac{g\lambda}{2\pi}} \tanh(2\pi h/\lambda)$$

$$C_B(Fr) = C(\lambda) \Longrightarrow \lambda(Fr)$$

 $\lambda(Fr)$

Nonlinearity vs dispersion

Bonneton et al, Comptes Rendus Geoscience, 2012 Bonneton et al, J. Geophysical Research - Oceans, 2015 40 ** 35 30 0 0 ₽ 0 25 Common undular tidal bore (mascaret): λ_w/D₁ 20 Favre wave 0 Dispersive propagation + nonlinearity 15 10 5 0` 0 0.05 0.15 0.2 0.1 0.25 0.3 Fr-1

 $\lambda(Fr)$

Favre experiments and low Froude transition

Treske, J. Hydraulic Research, 1994

Fig. 9. Undular bore at Froude ~ 1.06.

Fig. 10. Undular bore at Froude ~ 1.10 .

Treske, J. Hydraulic Research, 1994

Fig. 13. Bore at Froude ~ 1.35.

 $F_{t1} < Fr < F_{t2}$ *Fr*>F_{t2} $1 < Fr < F_{t1}$ F_{t1} F_{t2} Fr

Fr

Fig. 8. Undular bore at Froude ~ 1.04 .

Fig. 9. Undular bore at Froude ~ 1.06.

Fig. 10. Undular bore at Froude ~ 1.10.

Treske, J. Hydraulic Research, 1994

 $F_{t1} < Fr < F_{t2}$ 1<*Fr*<*F*_{t1} F_{t1}

Fr

Treske, J. Hydraulic Research, 1994

Treske, J. Hydraulic Research, 1994

Striking similarities between the low Fr transition observed in field and laboratory experiments

Low Fr Transition

Dispersive wave models

- Complex free surface dynamics (2D)
- Variable flow parameters: Fr
- Variable geometrical parameters: channel geom.

Using full 3D models: overkill

Approximate 2d models

Fig. 8. Undular bore at Froude ~ 1.04

Fig. 10. Undular bore at Froude ~ 1.10.

Bore at Froude ~

19

Dispersive wave models

Dimensionless parameters

• dispersion:
$$\mu=rac{h_0}{\lambda}=rac{\kappa h_0}{2\pi}$$

• non-linearity:
$$\epsilon = rac{a}{h_0}$$

Physical hypotheses

Long waves : small $\,\mu$

Weakly dispersive waves : $\mu^2 \ll 1\,,~~\mu^4$ negligible

Weak/full non-linearity : $\epsilon = \mathcal{O}(\mu^2)$ and $\epsilon = \mathcal{O}(1)$ respectively

Principles: asymptotic expansion, depth averaging

1. Starting point : nonlinear wave equations

$$\Delta \Phi = 0$$

$$\partial_t \Phi + \frac{1}{2} \|\nabla \Phi\|^2 + g\zeta = 0$$

$$\partial_t \zeta + \partial_x \Phi \partial_x \zeta = \partial_z \Phi$$

$$\partial_z \Phi = 0$$

2. Asymptotic dev. wrt μ^2 : $\Phi = \Phi_0 + \mu^2 \Phi_1 + \mu^4 \Phi_2 + \dots$

3. Depth averaging :
$$\int_{0}^{h_0+\zeta} (\cdot) dz \qquad \longrightarrow \qquad h\vec{u} = \int_{b}^{\zeta} \vec{v} dz$$

4. Retain appropriate order terms

Boussinesq, J.Math. Pures Appl., 1872 Dingemans, World Scientific, 1997 Lannes, AMS, 2013 Lannes, Nonlinearity, 2020

Dispersive wave models

Dimensionless parameters

• dispersion:
$$\mu=rac{h_0}{\lambda}=rac{\kappa h_0}{2\pi}$$

• non-linearity:
$$\epsilon = rac{a}{h_0}$$

Physical hypotheses

Long waves : small $\,\mu$

Weakly dispersive waves : $\mu^2 \ll 1\,,~~\mu^4$ negligible

Weak/full non-linearity : $\epsilon = \mathcal{O}(\mu^2)$ and $\epsilon = \mathcal{O}(1)$ respectively

Zeroth order in μ

Shallow water/Saint Venant equations

$$\begin{array}{l} \partial_t h + \partial_x (h \mathbf{u}) = 0\\ \partial_t (h \mathbf{u}) + \partial_x (h \mathbf{u}^2 + g h^2/2) + g h \partial_x b = 0\\ \end{array}$$
Bathymetry
Depth averaged velocity $h \vec{\mathbf{u}} = \int_b^\zeta \vec{\mathbf{v}} \, dz$

 $\partial_t h + \partial_x (h\mathbf{u}) = 0$

Weakly dispersive (μ^2) corrections Weakly nonlinear: $\epsilon = \mathcal{O}(\mu^2)$

$$\partial_t (h\mathbf{u}) + \partial_x (h\mathbf{u}^2 + gh^2/2) + gh\partial_x b = h\partial_t \left[\frac{d^2}{3}\partial_{xx}\mathbf{u} + \frac{d}{3}\partial_x d\partial_x \mathbf{u}\right]$$

 $d(x) = h_0 - b(x)$ Peregrine, J.Fluid Mech., 1967

$$\partial_t h + \partial_x (h \mathsf{u}) = 0$$

$$\partial_t (h \mathsf{u}) + \partial_x (h \mathsf{u}^2 + g h^2/2) + g h \partial_x b = \mathcal{D}$$

$$\mathcal{D} = \partial_t \left[\beta d^2 \partial_{xx} (h \mathsf{u}) + \frac{d}{3} \partial_x d\partial_x (h \mathsf{u}) \right] + Bg d^2 \left[d\partial_{xxx} \zeta + 2 \partial_x d\partial_{xx} \zeta \right]$$

Madsen & Sorensen, Coast.Eng., 1992

Weakly dispersive (μ^2) corrections Weakly nonlinear: $\epsilon = \mathcal{O}(\mu^2)$

Many v

Many variations for a given asymptotic accuracy
$$\mu^2 d \equiv \mu^2 h$$
 as the difference is of order $\mu^2 \epsilon = \mu^4$

* $\mu^2 \partial_{xxt} (d\mathbf{u}) \equiv \mu^2 \partial_{xxt} (h\mathbf{u})$ as the difference is of order $\mu^2 \epsilon = \mu^4$

Filippini et al, Coast.Eng., 2015

Kazolea & Ricchiuto, J.Hyd.Eng, to appear

h(t, x)

b(x)

 ${}^{\star z}$

 $\zeta(t,x)$

Weakly dispersive (μ^2) corrections Weakly nonlinear: $\epsilon = \mathcal{O}(\mu^2)$

Many variations for a given asymptotic accuracy

$$st$$
 $\ \mu^2 d \equiv \mu^2 h$ as the difference is of order $\mu^2 \epsilon = \mu^4$

* $\mu^2 \partial_{xxt} (d\mathbf{u}) \equiv \mu^2 \partial_{xxt} (h\mathbf{u})$ as the difference is of order $\mu^2 \epsilon = \mu^4$

Madsen & Sorensen, Coast.Eng., 1992

 x_{i}

Weakly dispersive (μ^2) corrections Weakly nonlinear: $\epsilon=\mathcal{O}(\mu^2)$

Many variations for a given asymptotic accuracy

$$st$$
 $\ \mu^2 d \equiv \mu^2 h$ as the difference is of order $\mu^2 \epsilon = \mu^4$

* $\mu^2 \partial_{xxt} (d\mathbf{u}) \equiv \mu^2 \partial_{xxt} (h\mathbf{u})$ as the difference is of order $\mu^2 \epsilon = \mu^4$

Weakly dispersive (μ^2) corrections Weakly nonlinear: $\epsilon=\mathcal{O}(\mu^2)$

Many variations for a given asymptotic accuracy

$$st$$
 $\ \mu^2 d \equiv \mu^2 h$ as the difference is of order $\mu^2 \epsilon = \mu^4$

* $\mu^2 \partial_{xxt} (d\mathbf{u}) \equiv \mu^2 \partial_{xxt} (h\mathbf{u})$ as the difference is of order $\mu^2 \epsilon = \mu^4$

Weakly dispersive (μ^2) corrections Fully nonlinear: $\epsilon=\mathcal{O}(1)$

 $\partial_t h + \partial_x (h \mathsf{u}) = 0$

 $\partial_t(h\mathbf{u}) + \partial_x(h\mathbf{u}^2 + gh^2/2) + gh\partial_x b = \mathcal{D}$

 $\mathcal{D} = \alpha \partial_x (h^2 \partial_x \dot{\mathbf{u}}) + (\alpha - 1) \partial_x (h^2 \partial_{xx} \zeta) + \mathcal{Q}(\mathbf{u}, b)$

$$\begin{aligned} \mathcal{Q}(\mathbf{u},b) = h\partial_x h^2 (\partial_x \mathbf{u})^2 &+ \frac{2}{3}h^3 \partial_x (\partial_x \mathbf{u})^2 \\ &+ h^2 \partial_x b (\partial_x \mathbf{u})^2 + \frac{h}{2} \partial_{xx} b \partial_x \mathbf{u}^2 + (\partial_x (h^2 \partial_{xx} b) + \partial_x (\partial_x b)^2) \frac{\mathbf{u}^2}{2} \end{aligned}$$

Green & Naghdi, J.Fluid Mech, 1976 Chazel et al, J.Sci.Comp. 2011

Weakly dispersive (μ^2) corrections

Fully nonlinear: $\epsilon = \mathcal{O}(1)$

MultiD numerical approximation

MultiD numerical approximation

	Weakly nonlinear	Fully nonlinear
	Weakly dispersive	Fully dispersive
Structured	• Madsen et al, 1992	• Wei & Kirby, 1995
Grids	• Nwogu , 1994	• Shi et al, 2012
	 Beji & Nadaoka, 1996 	• Lannes & Marche, 2015
	• etc. etc.	• etc. etc.
Unstructured	o Walkley & Berzins, 2002	Filippini et al, 2017
Grids	o Eskilsson & Sherwin, 2006	Ø Duran & Marche , 2017
	o Kazolea et al, 2012	Assiouene et al, 2020
	O Ricchiuto & Filippini, 2014	☑ Busto et al, 2021
	o etc. etc.	☑ etc. etc.

Certainly forgetting someone here ...

Enhanced Serre-Green-Naghdi equations in multiD

$$\partial_t h + \partial_x (h u) = 0$$

 $\partial_t (h u) + \partial_x (h u^2 + g h^2/2) + g h \partial_x b = \mathcal{D}$

 $\mathcal{D} = \alpha \partial_x (h^2 \partial_x \dot{\mathbf{u}}) + (\alpha - 1) \partial_x (h^2 \partial_{xx} \zeta) + \mathcal{Q}(\mathbf{u}, b)$

$$\begin{aligned} \mathcal{Q}(\mathbf{u},b) = h\partial_x h^2 (\partial_x \mathbf{u})^2 &+ \frac{2}{3}h^3 \partial_x (\partial_x \mathbf{u})^2 \\ &+ h^2 \partial_x b (\partial_x \mathbf{u})^2 + \frac{h}{2} \partial_{xx} b \partial_x \mathbf{u}^2 + (\partial_x (h^2 \partial_{xx} b) + \partial_x (\partial_x b)^2) \frac{\mathbf{u}^2}{2} \end{aligned}$$

Enhanced Serre-Green-Naghdi equations in multiD

$$\begin{split} \partial_t h + \partial_x (h \mathbf{u}) &= 0 \\ \partial_t (h \mathbf{u}) + \partial_x (h \mathbf{u}^2 + g h^2/2) + g h \partial_x b &= \varphi \\ \varphi - \alpha \partial_x (h \partial_x \varphi - \varphi \partial_x h) &= -\partial_x (h^2 \partial_{xx} \zeta) + \mathcal{Q} \\ \mathcal{Q}(\mathbf{u}, b) &= h \partial_x h^2 (\partial_x \mathbf{u})^2 + \frac{2}{3} h^3 \partial_x (\partial_x \mathbf{u})^2 \\ &+ h^2 \partial_x b (\partial_x \mathbf{u})^2 + \frac{h}{2} \partial_{xx} b \partial_x \mathbf{u}^2 + (\partial_x (h^2 \partial_{xx} b) + \partial_x (\partial_x b)^2) \frac{\mathbf{u}^2}{2} \end{split}$$

Enhanced Serre-Green-Naghdi equations in multiD

$$egin{aligned} \partial_t \pmb{q} +
abla \cdot \left(rac{\pmb{q} \otimes \pmb{q}}{h}
ight) + gh
abla \zeta - \pmb{arphi} = 0 & ext{Hyperbolic step} \end{aligned}$$
 $oldsymbol{arphi} + lpha ext{T}_h(\pmb{arphi}) = \mathcal{R}(h, \pmb{q}, b) & \\ \mathcal{R}(h, \pmb{q}, b) = ext{T}_h(h
abla \zeta) + \mathcal{Q}\left(rac{\pmb{q}}{h}
ight) & ext{Elliptic step} \end{aligned}$

 $\partial_t h + \nabla \cdot \boldsymbol{a} = 0$

For constant bathymetry

$$T_h(\boldsymbol{\varphi}) = -\nabla(h\nabla\cdot\boldsymbol{\varphi}) + \nabla(\boldsymbol{\varphi}\cdot\nabla h)$$

Filippini et al, J.Comput.Phys.2016

Kazolea et al, Ocean Mod., 2023

Enhanced Serre-Green-Naghdi solver

$$\partial_t oldsymbol{q} +
abla \cdot \left(rac{oldsymbol{q} \otimes oldsymbol{q}}{h}
ight) + gh
abla \zeta - oldsymbol{arphi} = 0 \quad extsf{Hyperbolic step}$$

 $\partial_t h + \nabla \cdot \boldsymbol{q} = 0$

Nodal Finite volume

Well-balanced Roe or HLL numerical fluxes/sources

Explicit high order time stepping (Runge-Kutta SSP3)

Compact nodal k-th derivative recovery via iterative corrected Green-Gauss*

Enhanced Serre-Green-Naghdi solver

$$oldsymbol{arphi} + lpha \mathbf{T}_h(oldsymbol{arphi}) = \mathcal{R}(h, oldsymbol{q}, b)$$

 $\mathcal{R}(h, oldsymbol{q}, b) = \mathbf{T}_h(h \nabla \zeta) + \mathcal{Q}\left(rac{oldsymbol{q}}{h}
ight)$ Elliptic step

For contant bathymetry

$$T_h(\boldsymbol{\varphi}) = -\nabla(h\nabla \cdot \boldsymbol{\varphi}) + \nabla(\boldsymbol{\varphi} \cdot \nabla h)$$

We solve it with standard H1 linear finite elements (not in H(div) ...) :

- Block SPD structure
- H1 is not the natural space

--> spurious ``curl modes'' need stabilization/damping

Enhanced Serre-Green-Naghdi solver

On the stability of I - grad div :

☑ H(div) conforming FE space

☑ Stability in H1

Curl stabilization: H1=H(div)+H(curl) Costabel, J.Math.Anal.Appl. 1991
 Bonnet-Ben Dhia et al, CRAS 2001, Bonnet-Ben Dhia et al, J. Comput. Appl. Math. 2007

O Mixed form + stabilization, Bonito et al, M2NA 2016, Chabassier & Duruflé 2018

O Laplacian stabilization

Mardal et al, SINUM 2002
On the stability of I - grad div :

$$\boldsymbol{\varphi} = (I + \alpha \mathbf{T}_h)^{-1} \mathcal{R}(h^n, \boldsymbol{q}^n, b)$$
$$\frac{h^{n+1} - h^n}{\Delta t} + \nabla \cdot \hat{\boldsymbol{q}}^n = \nabla \cdot (D_h \widehat{\nabla h}^n)$$
$$\frac{\boldsymbol{q}^{n+1} - \boldsymbol{q}^n}{\Delta t} + \nabla \cdot \hat{\boldsymbol{F}}_{\boldsymbol{q}}^n + \boldsymbol{S}_b^n - \boldsymbol{\varphi}^n = \nabla \cdot (D_{\boldsymbol{q}} \widehat{\nabla \boldsymbol{q}}^n)$$

• Laplacian stabilization Mardal et al, SINUM 2002

Embedded in FV numerical fluxes

Parabolic damping of spurious curl modes

Kazolea et al, Ocean Mod., 2023

The formal consistency of the method is

$$\partial_t h + \nabla \cdot \boldsymbol{q} = \mathcal{O}(\Delta x^3)$$

$$(I + \alpha T_h)(\partial_t \boldsymbol{q} + \nabla \cdot F_{\boldsymbol{q}} + \boldsymbol{S}_b) = \mathcal{R} + \mathcal{O}(\mu^2 \Delta x^2)$$

When using third order polynomial reconstruction and RK3

The formal consistency of the method is

$$\partial_t h + \nabla \cdot \boldsymbol{q} = \mathcal{O}(\Delta x^3)$$

$$(I + \alpha T_h)(\partial_t \boldsymbol{q} + \nabla \cdot F_{\boldsymbol{q}} + \boldsymbol{S}_b) = \mathcal{R} + \mathcal{O}(\mu^2 \Delta x^2)$$

When using third order polynomial reconstruction and RK3

What is the effect of this ?

Dispersion error (time continuous): $c(\kappa)_{ m num} - c(\kappa)_{ m GN}$

Filippini et al, J.Comput.Phys.2016 Kazolea et al, Ocean Mod., 2023

Dispersion error (time continuous):
$$c(\kappa)_{
m num} - c(\kappa)_{
m Euler}$$

Filippini et al, J.Comput.Phys.2016

Kazolea et al, Ocean Mod., 2023

MultiD numerical approximation

Validation

MultiD numerical approximation

Validation

Undular bores simulations

Undular bore simulations

Fr = 1.10

Fr = 1.17

Bonneton et al, J. Geophysical Research - Oceans, 2015

Treske, J. Hydraulic Research, 1994

Asymptotic analysis

Several elements suggest that it may be an hydrostatic phenomenon:

- It is predominant on the banks (very shallow limit)
- It involves long(er) waves
- Dispersion in wave propagation in heterogenous media
 Ketcheson & Quessada de Luna, Multiscale Mod. Simul., 2015

$$\epsilon_{tt} - \nabla \cdot \left(\frac{1}{\rho(\mathbf{x})} \nabla \sigma(\epsilon, \mathbf{x})\right) = 0, \ \sigma(\epsilon, \mathbf{x}) = \exp(K(\mathbf{x})\epsilon) - 1$$

Several elements suggest that it may be an hydrostatic phenomenon:

- It is predominant on the banks (very shallow limit)
- It involves long(er) waves
- Dispersion in wave propagation in heterogenous media
 Ketcheson & Quessada de Luna, Multiscale Mod. Simul., 2015

Shallow water simulations !

- Shallow water waves (hydrostatic, no dispersion terms)
- Linear waves
- Scale separation between transverse (fast) and longitudinal (slow) waves

2D NLSW in dimensionless form

$$\partial_t \zeta + \partial_x ((d + \epsilon \zeta)u) + \frac{1}{\delta} \partial_y ((d + \epsilon \zeta)v) = 0$$

$$\partial_t u + \epsilon u \partial_x u + \frac{\epsilon}{\delta} v \partial_y u + \partial_x \zeta = 0$$

$$\partial_t v + \epsilon u \partial_x v + \frac{\epsilon}{\delta} v \partial_y v + \frac{1}{\delta} \partial_y \zeta = 0$$

$$\mathcal{L}(t,x) = y_0 + rac{\epsilon}{\delta} \int_0^t v(s,x,y_{bank}(s,x)) ds$$

 $y = \pm \mathcal{L} \Rightarrow hv = 0$
for banks and

straight walls

$$\overline{(\cdot)} := rac{1}{2\mathcal{L}} \int\limits_{-\mathcal{L}(t,x)}^{\mathcal{L}(t,x)} (\cdot)(t,x,y) dy$$

Linearized problem

$$\delta(\partial_t \zeta + d\partial_x u) + \partial_y (dv) = 0$$
$$\partial_t u + \partial_x \zeta = 0$$
$$\delta\partial_t v + \partial_y \zeta = 0$$
$$d = d(y)$$

With

$$\mathcal{L} = y_0 \Rightarrow y \in [-y_0, y_0]$$

$$y = y_0 \Rightarrow dv = 0$$

for banks and straight walls

Linearized problem

$$\overline{(\cdot)} = \frac{1}{2y_0} \int_{-y_0}^{y_0} (\cdot) dy$$

$$\delta(\partial_t \zeta + d\partial_x u) + \partial_y (dv) = 0$$
$$\partial_t u + \partial_x \zeta = 0$$
$$\delta\partial_t v + \partial_y \zeta = 0$$
$$d = d(y)$$
$$y = y_0 \Rightarrow dv = 0$$

Linearized problem

$$\overline{(\cdot)} = \frac{1}{2y_0} \int_{-y_0}^{y_0} (\cdot) dy$$

$$\begin{split} \delta(\partial_t \zeta + d\partial_x u) &+ \partial_y (dv) = 0 \\ \partial_t u + \partial_x \zeta = 0 & \overline{\zeta}_{tt} - \overline{(d\zeta)}_{xx} = 0 \\ \delta\partial_t v + \partial_y \zeta = 0 & \text{This is exact} \\ d &= d(y) \\ y &= y_0 \Rightarrow dv = 0 \end{split}$$

$$\zeta = \sum_{j \ge 0} \delta^j \zeta_j, \quad u = \sum_{j \ge 0} \delta^j u_j, \quad v = \sum_{j \ge 0} \delta^j v^j$$

$$\begin{aligned} \delta(\partial_t \zeta + d\partial_x u) + \partial_y (dv) &= 0\\ \partial_t u + \partial_x \zeta &= 0\\ \delta \partial_t v + \partial_y \zeta &= 0 \end{aligned}$$

$$\zeta = \sum_{j \ge 0} \delta^j \zeta_j, \quad u = \sum_{j \ge 0} \delta^j u_j, \quad v = \sum_{j \ge 0} \delta^j v^j$$

$$\partial_y(dv_{n+1}) = -(\partial_t\zeta_n + d\partial_x u_n)$$
 with BCs $dv = 0$

$$\partial_t u_{n+1} = -\partial_x \zeta_{n+1}$$

$$\begin{array}{l} \partial_y \zeta_{n+1} = -\partial_t v_n \Longrightarrow \zeta_{n+1} = \overline{\zeta}_{n+1} + \overline{Z_{n+1}} - \overline{Z}_{n+1} \\ \end{array}$$
 arbitrary primitive of $-\partial_t v_n$

$$\zeta = \sum_{j \ge 0} \delta^j \zeta_j, \quad u = \sum_{j \ge 0} \delta^j u_j, \quad v = \sum_{j \ge 0} \delta^j v^j$$

$$\partial_y(dv_{n+1}) = -(\partial_t\zeta_n + d\partial_x u_n)$$
 with BCs $dv = 0$

$$\partial_t u_{n+1} = -\partial_x \zeta_{n+1}$$

$$\partial_y \zeta_{n+1} = -\partial_t v_n \Longrightarrow \zeta_{n+1} = \overline{\zeta}_{n+1} + Z_{n+1} - \overline{Z}_{n+1}$$

With C.I.

$$\zeta_0 = \overline{\zeta} \,, \ \partial_t u_0 = -\partial_x \zeta_0 \,, \ v_0 = 0$$

$$\zeta(x, y, t) = \overline{\zeta}(x, t) + \delta^2(K(y) - \overline{K})\overline{\zeta}_{xx} + \mathcal{O}(\delta^4)$$

$$K(y) := \int_{-y_0}^{y} \frac{y_0 + s - D(s)}{d(s)} ds$$

$$\mathcal{D}(y) := \int\limits_{-y_0}^{y} d(s) ds$$

$$\overline{\zeta}_{tt} - \overline{(d\zeta)}_{xx} = 0$$

$$\overline{\zeta}_{tt} - \overline{c_0^2 \overline{\zeta}_{xx}} - \chi c_0^2 \overline{\zeta}_{xxxx} = 0$$

$$\chi := d(y)(K(y) - \overline{K})$$

Dispersive behaviour due to diffraction within each section

$$\omega^2 = \kappa^2 c_0^2 (1 - \chi(\kappa y_0^2))$$

Shallow water simulations:

- 1- Linear periodic signal imposed at the inlet
- 2- The whole signal is (section-)averaged
- 3- Period and wavelength are measured downstream

Nonlinearity vs dispersion

Bore:

given the upstream/downstream conditions and using the jump conditions:

Water waves:

dispersion relation based on the linearized Euler equations (Airy theory)

$$C = C(Fr) = C(h_2/h_1)$$
 $C = C(\lambda) = \sqrt{\frac{g\lambda}{2\pi}} \tanh(2\pi h/\lambda)$

$$C(Fr) = C(\lambda) \Longrightarrow \lambda(Fr)$$

$\overline{\zeta}_{tt} - \overline{\zeta}_{xx} - \delta^2 \chi \overline{\zeta}_{xxxx} = 0$

$$\chi := d(y)(K(y) - \overline{K})$$

Dispersive like-waves:

dispersion relation

$$C = C(\lambda)$$

Bore:

Jump conditions for section-averaged NLSW **Chanson,** Elsevier, 2004

C = C(Fr)

Serre-Green-Naghdi simulations

Compared to data and theory

Asymptotic analysis

Geometrical parameters

Ongoing foreseen work and open issues

Modelling

• Asymptotic analysis including :

u some geometrical nonlinearity

- "vertical" dispersion (on a Boussinesq model): connect the two dispersive behaviours
- Nonlinear version of the above : 1D model for channels with some potential for applications (including both regimes)
- Why the transition : modulation equations (see work of El and Gavrilyuk) ?
- Coupled model with river bed morphology

Ongoing foreseen work and open issues

Numerics

- H(div) vs curl augmented approach vs current one for the elliptic pb
- Boundary conditions for the elliptic pb
- Further work on efficiency/accuracy of scheme (elliptic vs hyperbolic)
- Impact of numerical dissipation:
 □ Use energy conservative fluxes (for SW)
 □ Full energy conservation for GN
 □ Dissipation vs solitary wave fission (cf work of El, Physics D 2016)
- Physics based dissipation

Related work

M. Ricchiuto and A.G. Filippini, Upwind residual discretization of enhanced Boussinesq equations for wave propagation over complex bathymetries, *J.Comput.Phys. 271*, 2014

A.G. Filippini, S. Bellec, M. Colin, and M. Ricchiuto, On the nonlinear behavior of Boussinesq type models: amplitude-velocity vs amplitude-flux forms, *Coast.Eng.* 99, 2015

A.G. Filippini, M. Kazolea, and M. Ricchiuto, A flexible genuinely nonlinear approach for wave propagation, breaking and runup, *J.Comput.Phys. 310*, 2016

A.G. Filippini, M. Kazolea, and M. Ricchiuto, Hybrid finite-volume/eleent simulations of fullynonlinear/weakly dispersive wave propagation breaking and rupnup on unstructured grids, SIAM-GS Conference, Sep 2017

A.G. Filippini, M. Kazolea, and M. Ricchiuto, A Flexible 2D Nonlinear Approach for Nonlinear Wave Propagation, Breaking and Run up, Proc.s 27th Int. Ocean and Polar Engineering Conference, 2017

A.G. Filippini, L. Arpaia, P. Bonneton, and M. Ricchiuto, Modelling analysis of tidal bore formation in convergent estuaries, Eur.J.Mech. – B/Fluids 73, 2019

R. Chassagne, A.G. Filippini, P. Bonneton, and M. Ricchiuto, Dispersive and dispersive-like bores in channels with sloping banks, *Journal of Fluid Mechanics* 870, pp. 595-616, 2019

M. Kazolea, A.G. Filippini, M. Ricchiuto, Low dispersion finite volume/element discretization of the enhanced Green–Naghdi equations for wave propagation, breaking and runup on unstructured meshes, *Ocean Mod.* 182, 2023

M. Kazolea, and M. Ricchiuto, M. Kazolea and M. Ricchiuto, Full nonlinearity in weakly dispersive Boussinesq models: luxury or necessity ?, *J. Hydraul. Eng*, to appear