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Turnpike property in optimal control

Quasi-static behavior of solutions of optimal control problem in large time
for different initial and final conditions.
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Turnpike appears in different classes of OCPs:
Finite dimensional (ODE) [Trélat-Zuazua 2015, Faulwasser et al. 2015]
Infinite dimensional (PDE) [Grüne et al. 2019]
Discrete systems (autonomous and non autonomous) [Grüne et al. 2018]

Turnpike appears in economical, biological, physical systems

Applications of turnpike:
Asymptotic analysis [Grüne et al. 2018, Trélat-Zuazua 2015]
Numerical methods [Trélat-Zuazua 2015, Cots et al. 2021]
Error analysis in MPC [Grüne et al. 2019]
Sub-optimal control strategies [Caillau et al. 2022]
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Partial turnpike

Symmetry induced turnpike in mechanical systems [Faulwasser et al. 2022]

Figure 1: Turnpike towards rotational orbit in 2D Kepler [Faulwasser et al. 2022]
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Optimal control problem (OCP)
Find control u(t) ∈ Rm and trajectory x(t) ∈M solution of

min
u

J(u) =
∫ T

0
f0(x(t), u(t))dt

s.t. ẋ(t) = f(x(t), u(t))
x(0) = 0

Hamiltonian (Pontryagin Min Principle) H(x, λ, u) = 〈λ, f(x, u)〉+ f0(x, u)

Static problem
min

ū∈Rm,x̄∈M
f0(x̄, ū)

f(x̄, ū) = 0,

Lagrangian (Karush–Kuhn–Tucker) L(x̄, λ̄, ū) = 〈λ̄, f(x̄, ū)〉+ f0(x̄, ū)
with λ̄ Lagrange multiplier
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Classical turnpike property

Let (x̄, ū) be a solution of the static OCP and λ̄ the Lagrange multiplier

Local exponential turpike property [Trélat and Zuazua 2015]
There exist positive constants ε, µ, C and T0 such that

if ‖x(0)− x̄‖+ ‖λ̄‖ ≤ ε

then for any T > T0 there holds

‖x(t)− x̄‖+ ‖u(t)− ū‖ ≤ C
(
e−µt + e−µ(T−t)

)
, t ∈ [0, T ]

Classical turnpike theorem [Trélat and Zuazua 2015]
Under conditions on Hamiltonian H (hyperbolicity), local exp. turnpike holds
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Lie group action

Let M be a smooth manifold

Lie group action
Lie group G acts on M by smooth action Φ : G×M →M satisfying

Φ(e, x) = x for all x ∈M
Φ(g,Φ(h, x)) = Φ(gh, x) for all x ∈M and g, h ∈ G

For any g ∈ G, let Φg : x 7→ Φ(g, x) = Φg(x) = g · x

Orbit of x ∈M is Orb(x) = {Φg(x) : g ∈ G}
Let ξ ∈ g, its flow from x ∈M is defined by φξ(t) = Φ(exp(ξt), x)

Trim
x solution of ẋ = f(x, u) with const u and s.t. x(t) = φξ(t) for some ξ ∈ g
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Principal bundle

G is free and proper ⇒ principal bundle π : M →M/G = space of orbits
principal connection A : TM → g is g-valued one form on M s.t.
A(gv) = AdgA(v) and A( d

dtφ
ξ(t)
∣∣
t=0) = ξ

splitting TxM = TxOrb(x)⊕ ker(Ax) = Vx ⊕Hx

M

M/G
y1 y2

x1

x2

Orb(x1) Orb(x2)

Vx1

Hx1

Hx2

Vx2

(adapted from Wiki)

Example: trivial bundle
principal bundle π : P ×G→ P with Maurer-Cartan form A(p,g) = g−1 ◦ dg
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Symmetry in optimal control

Optimal control problem (OCP)
Find control u(t) ∈ Rm and trajectory x(t) ∈M solution of

min
u

J(u) =
∫ T

0
f0(x(t), u(t))dt

s.t. ẋ(t) = f(x(t), u(t))
x(0) = x0.

Lie group G acts on M by Φg : M →M and dΦg : TM → TM for any g ∈ G

OCP with G symmetry
f0 invariant w.r.t G : f0(Φg(x), u) = f0(x, u)
f equivariant w.r.t G : f(Φg(x), u) = dxΦgf(x, u)
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Reduction

Principal connection A : TM → g defines TM/G
A' T (M/G)⊕ (M × g)/G︸ ︷︷ ︸

bundle over M/G

Reduced OCP [Ohsawa 2013]
Find control u(t) ∈ Rm and trajectory y(t) ∈M/G, ξ(t) ∈ g̃ = (M × g)/G
solution of

min
u

J(u) =
∫ T

0
f0
M/G(y(t), u(t))dt

s.t. ẏ(t) = fM/G(y(t), u(t))
ξ(t) = fg̃(y(t), u(t))

y(0) = π(x0).

fM/G(y, u) = dπ(x) ◦ f(x, u)
ξ(t) = fg̃(y, u) : [x,Ax(ẋ)]G = [x,Ax(f(x, u))]G with [·, ·]G equiv. class

In (y, g)-coordinates : ξ(t) = (y, ζ(t) +A(y,e)(ẏ, 0)), ζ(t) = g−1ġ ∈ g
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Example: 2D Kepler problem = 2 body problem in 2-dim plane

State (r, vr, θ, vθ) ∈ R2 \ {0} × TS1 and G = S1 acts on θ by translations

min
u
J(u) =

∫ T

0
f0(r(t), vr(t), vθ(t), u(t))dt

ṙ = vr

v̇r = rv2
θ − 1

r2 + u1

θ̇ = vθ

v̇θ = −2 vrvθr + u2
r2

Trivial bundle R2 \ {0} × TS1 '
(
R2 \ {0} × R

)
× S1

Maurer-Cartan connection A : (θ, vθ) 7→ vθ

Reduced problem:

min
u
J(u) =

∫ T

0
f0(r(t), vr(t), vθ(t), u(t))dt

ṙ = vr

v̇r = rv2
θ − 1

r2 + u1

v̇θ = −2 vrvθr + u2
r2

and ξ(t) = vθ(t)
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OCP with symmetries

Consider OCP invariant w.r.t. G-action on M

min
u

J(u) =
∫ T

0
f0(x(t), u(t))dt

s.t. ẋ(t) = f(x(t), u(t))
x(0) = x0.

Static OCP = static reduced OCP
ū ∈ Rm and ȳ ∈M/G, ξ ∈ g̃ = (M × g)/G solution of

min
ū
f0
M/G(ȳ, ū)

0 = fM/G(ȳ, ū)
ξ = fg̃(ȳ, ū)

ξ = fg̃(ȳ, ū) leads to ġ(t) = g(t)ζ(ȳ, ū), ζ(ȳ, ū) ∈ g

Static solution = trim corresponding to ū and ζ(ȳ, ū) ∈ g
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Turnpike OCP with symmetries

Trivial bundle case: M = M/G×G: global coordinates x = (y, g)
General case: M = M/G×G with x = (y, g) locally near fixed y0 ∈M/G

In coordinates (y, g): ȳ can be lifted to x̄0 = (ȳ, g0) and the trim is defined by
x̄(t) = φζ(ȳ,ū)t(ȳ, g0)

Theorem 1
If the reduced problem admits a classical local exp. turnpike
⇒ full OCP admits the local exp. turnpike toward trim x̄(t) = φζ(ȳ,ū)t(ȳ, g0):
There exist positive constants ε, µ, C and T0 such that

if ‖π(x(0))− ȳ‖+ ‖λ̄y‖ ≤ ε

then for any T > T0 there holds

‖x(t)− x̄(t)‖+ ‖u(t)− ū‖ ≤ C
(
e−µt + e−µ(T−t)

)
, t ∈ [0, T ]
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Model of rigid body with rotors

Configuration Q = SO(3)×S1×S1×S1 with R ∈ SO(3) and θ ∈ S1×S1×S1

G = SO(3) acts on Q by rotations of R

The motions are described by Lagrange–d’Alembert principle and Lagrangian

L(R, Ṙ, θ, θ̇) = 1
2 〈R

−1Ṙ, IR−1Ṙ〉+ 1
2 〈R

−1Ṙ+ θ̇, K
(
R−1Ṙ+ θ̇

)
〉

I,K inertia tensors : I of the rigid body and K of rotors
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Model of rigid body with rotors

L(R, Ṙ, θ, θ̇) = 1
2 〈R

−1Ṙ, IR−1Ṙ〉+ 1
2 〈R

−1Ṙ+ θ̇, K
(
R−1Ṙ+ θ̇

)
〉

Control system = controlled Euler-Lagrange equations
State (R, vR, θ, vθ) ∈M = TSO(3)× T (S1 × S1 × S1), control u ∈ R3

d

dt

∂

∂Ṙ
L− ∂

∂R
L = 0

d

dt

∂

∂θ̇
L− ∂

∂θ
L = u

⇒


Ṙ = vR

θ̇ = vθ

v̇R = vRΩ +RfvR(Ω, vθ, u)
v̇θ = fθ(Ω, vθ, u)

we denote Ω = R−1Ṙ = R−1vR

L is invariant w.r.t. G ⇒ controlled E-L eq. equivariant w.r.t. G action
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OCP invariant w.r.t G = SO(3)
State x = (R, vR, θ, vθ) ∈M = TSO(3)× T (S1 × S1 × S1), control u ∈ R3

min
u
J(u) =

∫ T

0
f0(Ω, vθ, θ, u)dt

ẋ = f(x, u)
x(0) = x0

with Ω = R−1v̇R

TSO(3)× T (S1 × S1 × S1) '
(
g× T (S1 × S1 × S1)

)
× SO(3) trivial bundle

Static reduced OCP
State (Ω̄ = R−1vR, θ̄, v̄θ) ∈M/G = g× T (S1 × S1 × S1)

min
u∈R3

f0(Ω̄, v̄θ, θ̄, ū)

0 = fM/G(Ω̄, v̄θ, ū) and ξ(t) = Ω̄

Trim turnpike: orbit R(t) = R0 exp(Ω̄t)
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Numerical results

Cost f0 = (Ω− e)2 + θ2 + u2 with e = (1, 1, 1)
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Numerical results
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Conclusions and outlook

Conclusions:

Framework for turnpike in OCP with symmetries
Local exponential turnpike of OCP with symmetries and free final state
Theoretical results validated on example from mechanics

Outlook:

Global turnpike
Fixed final conditions
Group action on both state and control
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