Turnpike property of optimal control problems with symmetries

Sofya Maslovskaya

Paderborn University, Germany

Joint work with Kathrin Flaßkamp (Saarland University), Sina Ober-Blöbaum and Boris Wembe (Paderborn University)

 $\rm SMAI\ 2023$

- 2 Turnpike property
- **3** OCP with symmetries and reduction
- **4** Example of rigid body with rotors
- 5 Conclusions

- 2 Turnpike property
- **3** OCP with symmetries and reduction
- **4** Example of rigid body with rotors
- **5** Conclusions

Quasi-static behavior of solutions of optimal control problem in large time for different initial and final conditions.

Turnpike appears in different classes of OCPs:

- Finite dimensional (ODE) [Trélat-Zuazua 2015, Faulwasser et al. 2015]
- Infinite dimensional (PDE) [Grüne et al. 2019]
- Discrete systems (autonomous and non autonomous) [Grüne et al. 2018]

Turnpike appears in economical, biological, physical systems

Applications of turnpike:

- Asymptotic analysis [Grüne et al. 2018, Trélat-Zuazua 2015]
- Numerical methods [Trélat-Zuazua 2015, Cots et al. 2021]
- Error analysis in MPC [Grüne et al. 2019]
- Sub-optimal control strategies [Caillau et al. 2022]

Symmetry induced turnpike in mechanical systems [Faulwasser et al. 2022]

Figure 1: Turnpike towards rotational orbit in 2D Kepler [Faulwasser et al. 2022]

2 Turnpike property

3 OCP with symmetries and reduction

4 Example of rigid body with rotors

5 Conclusions

Optimal control problem (OCP)

Find control $u(t) \in \mathbb{R}^m$ and trajectory $x(t) \in M$ solution of

$$\min_{u} \quad J(u) = \int_{0}^{T} f^{0}(x(t), u(t))dt$$

s.t.
$$\dot{x}(t) = f(x(t), u(t))$$
$$x(0) = 0$$

Hamiltonian (Pontryagin Min Principle) $H(x,\lambda,u)=\langle\lambda,f(x,u)\rangle+f^0(x,u)$

Static problem

$$\min_{\bar{u}\in\mathbb{R}^m, \bar{x}\in M} f^0(\bar{x}, \bar{u})$$
$$f(\bar{x}, \bar{u}) = 0,$$

Lagrangian (Karush–Kuhn–Tucker) $L(\bar{x}, \bar{\lambda}, \bar{u}) = \langle \bar{\lambda}, f(\bar{x}, \bar{u}) \rangle + f^0(\bar{x}, \bar{u})$ with $\bar{\lambda}$ Lagrange multiplier Let (\bar{x}, \bar{u}) be a solution of the static OCP and $\bar{\lambda}$ the Lagrange multiplier

Local exponential turpike property [Trélat and Zuazua 2015]

There exist positive constants ε, μ, C and T_0 such that

if
$$||x(0) - \bar{x}|| + ||\bar{\lambda}|| \le \varepsilon$$

then for any $T > T_0$ there holds

$$\|x(t) - \bar{x}\| + \|u(t) - \bar{u}\| \le C\left(e^{-\mu t} + e^{-\mu(T-t)}\right), \quad t \in [0,T]$$

Classical turnpike theorem [Trélat and Zuazua 2015]

Under conditions on Hamiltonian H (hyperbolicity), local exp. turnpike holds

- 2 Turnpike property
- **3** OCP with symmetries and reduction
- **4** Example of rigid body with rotors
- **5** Conclusions

Let ${\cal M}$ be a smooth manifold

Lie group action

Lie group G acts on M by smooth action $\Phi: G \times M \to M$ satisfying

•
$$\Phi(e, x) = x$$
 for all $x \in M$

$$\bullet \ \Phi(g,\Phi(h,x)) = \Phi(gh,x) \text{ for all } x \in M \text{ and } g,h \in G$$

For any $g \in G$, let $\Phi_g : x \mapsto \Phi(g, x) = \Phi_g(x) = g \cdot x$

- Orbit of $x \in M$ is $\operatorname{Orb}(x) = \{\Phi_g(x) : g \in G\}$
- Let $\xi \in \mathfrak{g}$, its flow from $x \in M$ is defined by $\phi^{\xi}(t) = \Phi(\exp(\xi t), x)$

Trim

x solution of $\dot{x} = f(x, u)$ with const u and s.t. $x(t) = \phi^{\xi}(t)$ for some $\xi \in \mathfrak{g}$

Principal bundle

- G is free and proper \Rightarrow principal bundle $\pi: M \to M/G$ = space of orbits • principal connection $\mathcal{A}: TM \to \mathfrak{g}$ is \mathfrak{g} -valued one form on M s.t.
- $\mathcal{A}(gv) = \operatorname{Ad}_{g}\mathcal{A}(v) \text{ and } \mathcal{A}(\frac{d}{dt}\phi^{\xi}(t)\big|_{t=0}) = \xi$ splitting $T_{x}M = T_{x}\operatorname{Orb}(x) \oplus \ker(\mathcal{A}_{x}) = V_{x} \oplus H_{x}$

Example: trivial bundle

principal bundle $\pi: P \times G \to P$ with Maurer-Cartan form $\mathcal{A}_{(p,q)} = g^{-1} \circ dg$

Optimal control problem (OCP)

Find control $u(t) \in \mathbb{R}^m$ and trajectory $x(t) \in M$ solution of

$$\min_{u} \quad J(u) = \int_{0}^{T} f^{0}(x(t), u(t)) dt$$
s.t. $\dot{x}(t) = f(x(t), u(t))$
 $x(0) = x_{0}.$

Lie group G acts on M by $\Phi_g: M \to M$ and $d\Phi_g: TM \to TM$ for any $g \in G$

OCP with G symmetry

- f^0 invariant w.r.t G : $f^0(\Phi_g(x), u) = f^0(x, u)$
- $\blacksquare \ f$ equivariant w.r.t $G: \ f(\Phi_g(x), u) = d_x \Phi_g f(x, u)$

Principal connection $\mathcal{A}: TM \to \mathfrak{g}$ defines $TM/G \cong \underbrace{T(M/G) \oplus (M \times \mathfrak{g})/G}_{\text{bundle over } M/G}$

Reduced OCP [Ohsawa 2013]

Find control $u(t) \in \mathbb{R}^m$ and trajectory $y(t) \in M/G$, $\xi(t) \in \tilde{\mathfrak{g}} = (M \times \mathfrak{g})/G$ solution of

$$\begin{split} \min_{u} \quad J(u) &= \int_{0}^{T} f_{M/G}^{0}(y(t), u(t)) dt \\ \text{s.t.} \qquad \dot{y}(t) &= f_{M/G}(y(t), u(t)) \\ & \xi(t) &= f_{\tilde{\mathfrak{g}}}(y(t), u(t)) \\ & y(0) &= \pi(x_{0}). \end{split}$$

•
$$f_{M/G}(y, u) = d\pi(x) \circ f(x, u)$$

• $\xi(t) = f_{\tilde{g}}(y, u) : [x, \mathcal{A}_x(\dot{x})]_G = [x, \mathcal{A}_x(f(x, u))]_G$ with $[\cdot, \cdot]_G$ equiv. class

In (y,g)-coordinates : $\xi(t) = (y,\zeta(t) + \mathcal{A}_{(y,e)}(\dot{y},0)), \ \zeta(t) = g^{-1}\dot{g} \in \mathfrak{g}$

Example: 2D Kepler problem = 2 body problem in 2-dim plane

State $(r, v_r, \theta, v_\theta) \in \mathbb{R}^2 \setminus \{0\} \times TS^1$ and $G = S^1$ acts on θ by translations

$$\min_{u} J(u) = \int_{0}^{T} f^{0}(r(t), v_{r}(t), v_{\theta}(t), u(t)) dt$$

$$\begin{cases} \dot{r} = v_{r} \\ \dot{v}_{r} = rv_{\theta}^{2} - \frac{1}{r^{2}} + u_{1} \\ \dot{\theta} = v_{\theta} \\ \dot{v}_{\theta} = -2\frac{v_{r}v_{\theta}}{r} + \frac{u_{2}}{r^{2}} \end{cases}$$

Trivial bundle \$\mathbb{R}^2 \ {0} \ \times TS^1 \approx (\mathbb{R}^2 \ {0} \ \times \mathbb{S}^1)\$
Maurer-Cartan connection \$\mathcal{A} : (\theta, v_\theta) \mathbf{\to} v_\theta\$

$$\min_{u} J(u) = \int_{0}^{T} f^{0}(r(t), v_{r}(t), v_{\theta}(t), u(t)) dt$$

$$\begin{cases}
\dot{r} = v_{r} \\
\dot{v}_{r} = rv_{\theta}^{2} - \frac{1}{r^{2}} + u_{1} \\
\dot{v}_{\theta} = -2\frac{v_{r}v_{\theta}}{r} + \frac{u_{2}}{r^{2}}
\end{cases}$$
and
$$\xi(t) = v_{\theta}(t)$$

Reduced problem:

OCP with symmetries

Consider OCP invariant w.r.t. G-action on M

$$\min_{u} \quad J(u) = \int_{0}^{T} f^{0}(x(t), u(t)) dt$$
 s.t.
$$\dot{x}(t) = f(x(t), u(t))$$
$$x(0) = x_{0}.$$

Static OCP = static reduced OCP

 $\bar{u} \in \mathbb{R}^m$ and $\bar{y} \in M/G$, $\xi \in \tilde{\mathfrak{g}} = (M \times \mathfrak{g})/G$ solution of

$$\begin{split} \min_{\bar{u}} f^0_{M/G}(\bar{y},\bar{u}) \\ 0 &= f_{M/G}(\bar{y},\bar{u}) \\ \xi &= f_{\tilde{\mathfrak{g}}}(\bar{y},\bar{u}) \end{split}$$

 $\xi=f_{\tilde{\mathfrak{g}}}(\bar{y},\bar{u}) \text{ leads to } \dot{g}(t)=g(t)\zeta(\bar{y},\bar{u}), \ \zeta(\bar{y},\bar{u})\in\mathfrak{g}$

Static solution = trim corresponding to \bar{u} and $\zeta(\bar{y}, \bar{u}) \in \mathfrak{g}$

Turnpike OCP with symmetries

Trivial bundle case: $M = M/G \times G$: global coordinates x = (y, g)

• General case: $M = M/G \times G$ with x = (y, g) locally near fixed $y_0 \in M/G$

In coordinates (y,g): \bar{y} can be lifted to $\bar{x}_0 = (\bar{y},g_0)$ and the trim is defined by $\bar{x}(t) = \phi^{\zeta(\bar{y},\bar{u})t}(\bar{y},g_0)$

Theorem 1

If the reduced problem admits a classical local exp. turnpike \Rightarrow full OCP admits the local exp. turnpike toward trim $\bar{x}(t) = \phi^{\zeta(\bar{y},\bar{u})t}(\bar{y},g_0)$: There exist positive constants ε, μ, C and T_0 such that

if
$$\|\pi(x(0)) - \bar{y}\| + \|\bar{\lambda}_y\| \le \varepsilon$$

then for any $T > T_0$ there holds

$$\|x(t) - \bar{x}(t)\| + \|u(t) - \bar{u}\| \le C\left(e^{-\mu t} + e^{-\mu(T-t)}\right), \qquad t \in [0,T]$$

- 2 Turnpike property
- **3** OCP with symmetries and reduction
- **4** Example of rigid body with rotors

5 Conclusions

Model of rigid body with rotors

Configuration $Q = SO(3) \times S^1 \times S^1 \times S^1$ with $R \in SO(3)$ and $\theta \in S^1 \times S^1 \times S^1$

G = SO(3) acts on Q by rotations of R

The motions are described by Lagrange–d'Alembert principle and Lagrangian

$$L(R, \dot{R}, \theta, \dot{\theta}) = \frac{1}{2} \langle R^{-1} \dot{R}, IR^{-1} \dot{R} \rangle + \frac{1}{2} \langle R^{-1} \dot{R} + \dot{\theta}, K \left(R^{-1} \dot{R} + \dot{\theta} \right) \rangle$$

I, K inertia tensors : I of the rigid body and K of rotors

$$L(R, \dot{R}, \theta, \dot{\theta}) = \frac{1}{2} \langle R^{-1} \dot{R}, IR^{-1} \dot{R} \rangle + \frac{1}{2} \langle R^{-1} \dot{R} + \dot{\theta}, K \left(R^{-1} \dot{R} + \dot{\theta} \right) \rangle$$

Control system = controlled Euler-Lagrange equations

State $(R, v_R, \theta, v_\theta) \in M = TSO(3) \times T(S^1 \times S^1 \times S^1)$, control $u \in \mathbb{R}^3$

$$\frac{d}{dt}\frac{\partial}{\partial \dot{R}}L - \frac{\partial}{\partial R}L = 0 \qquad \Rightarrow \qquad \begin{cases} R = v_R \\ \dot{\theta} = v_\theta \\ \dot{v}_R = v_R\Omega + Rf_{v_R}(\Omega, v_\theta, u) \\ \dot{v}_\theta = f_\theta(\Omega, v_\theta, u) \end{cases}$$

we denote $\Omega = R^{-1}\dot{R} = R^{-1}v_R$

L is invariant w.r.t. $G \Rightarrow$ controlled E-L eq. equivariant w.r.t. G action

OCP invariant w.r.t G = SO(3)

State $x = (R, v_R, \theta, v_\theta) \in M = TSO(3) \times T(S^1 \times S^1 \times S^1)$, control $u \in \mathbb{R}^3$

$$\begin{split} \min_{u} J(u) &= \int_{0}^{T} f^{0}(\Omega, v_{\theta}, \theta, u) dt \\ \dot{x} &= f(x, u) \\ x(0) &= x_{0} \end{split}$$

with $\Omega = R^{-1}\dot{v}_R$

 $TSO(3) \times T(S^1 \times S^1 \times S^1) \simeq \left(\mathfrak{g} \times T(S^1 \times S^1 \times S^1)\right) \times SO(3) \text{ trivial bundle}$

Static reduced OCP

State
$$(\bar{\Omega} = R^{-1}v_R, \bar{\theta}, \bar{v}_{\theta}) \in M/G = \mathfrak{g} \times T(S^1 \times S^1 \times S^1)$$

$$\min_{u \in \mathbb{R}^3} f^0(\bar{\Omega}, \bar{v}_{\theta}, \bar{\theta}, \bar{u})$$
$$0 = f_{M/G}(\bar{\Omega}, \bar{v}_{\theta}, \bar{u}) \quad \text{and} \quad \xi(t) = \bar{\Omega}$$

Trim turnpike: orbit $R(t) = R_0 \exp(\bar{\Omega}t)$

Numerical results

Cost $f^0 = (\Omega - e)^2 + \theta^2 + u^2$ with e = (1, 1, 1)

Numerical results

- 2 Turnpike property
- **3** OCP with symmetries and reduction
- **4** Example of rigid body with rotors

5 Conclusions

Conclusions:

- Framework for turnpike in OCP with symmetries
- Local exponential turnpike of OCP with symmetries and free final state
- Theoretical results validated on example from mechanics

Outlook:

- Global turnpike
- Fixed final conditions
- Group action on both state and control

Thank you for your attention!

Ohsawa T

Symmetry reduction of optimal control systems and principal connections. SIAM Journal on Control and Optimization, 2013.

Trélat E and Zuazua E

The turnpike property in finite-dimensional nonlinear optimal control. *Journal of Differential Equations* 2015.

Faulwasser T, Flaßkamp K, Ober-Blöbaum S, Schaller M and Worthmann K Manifold turnpikes, trims, and symmetries. Mathematics of Control, Signals, and Systems, 2022.

Caillau JB, Djema W, Gouzé JL, Maslovskaya S and Pomet JB. Turnpike property in optimal microbial metabolite production. Journal of Optimization Theory and Applications, 2022.

Cots O., Gergaud J. and Wembe B.

Homotopic approach for turnpike and singularly perturbed optimal control problems. ESAIM: ProcS, 2021.

Faulwasser T, Korda M, Jones CN and Bonvin D

On turnpike and dissipativity properties of continuous-time optimal control problems. *Automatica*, 2017.

Grüne L, Pirkelmann S and Stieler M

Strict dissipativity implies turnpike behavior for time-varying discrete time optimal control problems.

Control Systems and Mathematical Methods in Economics, 2018.

Sensitivity Analysis of Optimal Control for a Class of Parabolic PDEs Motivated by MPC. SIAM Journal on Control and Optimization, 2019.