

Tomographie électromagnétique pour le génie civil

<u>Théau COUSIN^{1, 2, 3}</u>, Antoine TONNOIR¹, Cyrille FAUCHARD², Christian GOUT¹ 23 mai 2023

¹LMI - INSA Rouen ²ENDSUM - Cerema ³Routes de France

Contexte et objectifs

1

CONTEXTE ET OBJECTIFS

1

CONTEXTE ET OBJECTIFS

Thèse en contrat CIFRE financée par Routes de France, en partenariat avec le LMI (INSA -Rouen) et le Cerema (équipe ENDSUM).

 * Les routes coûtent chères à construire (millions d'€ par km) et sont soumises à d'importants efforts (climat, trafic, etc..).

1

CONTEXTE ET OBJECTIFS

- * Les routes coûtent chères à construire (millions d'€ par km) et sont soumises à d'importants efforts (climat, trafic, etc..).
- Vérification après la réception (notamment la <u>compacité</u>).

1

CONTEXTE ET OBJECTIFS

- Les routes coûtent chères à construire (millions d'€ par km) et sont soumises à d'importants efforts (climat, trafic, etc..).
- Vérification après la réception (notamment la compacité).
- * Pesée hydrostatique, Banc gamma

CONTEXTE ET OBJECTIFS

- Les routes coûtent chères à construire (millions d'€ par km) et sont soumises à d'importants efforts (climat, trafic, etc..).
- Vérification après la réception (notamment la compacité).
- * <u>Pesée hydrostatique</u>, <u>Banc gamma</u> <u>Mesure globale</u> <u>Source nucléaire</u>

CONTEXTE ET OBJECTIFS

- Les routes coûtent chères à construire (millions d'€ par km) et sont soumises à d'importants efforts (climat, trafic, etc..).
- Vérification après la réception (notamment la compacité).
- * Pesée hydrostatique, Banc gamma Mesure globale Source nucléaire

CONTEXTE ET OBJECTIFS

Thèse en contrat CIFRE financée par Routes de France, en partenariat avec le LMI (INSA -Rouen) et le Cerema (équipe ENDSUM).

- Les routes coûtent chères à construire (millions d'€ par km) et sont soumises à d'importants efforts (climat, trafic, etc..).
- Vérification après la réception (notamment la <u>compacité</u>).
- * Pesée hydrostatique, Banc gamma Mesure globale Source nucléaire
- Intérêts de la <u>permittivité</u> ainsi que du modèle de CRIM¹.

1 The C. FAUCHARD, Estimation of compaction of bituminous mixtures at microwave frequencies, <u>Tème Symp Int sur les ENDGC</u>, (2009)

CONTEXTE ET OBJECTIFS

Thèse en contrat CIFRE financée par Routes de France, en partenariat avec le LMI (INSA -Rouen) et le Cerema (équipe ENDSUM).

- Les routes coûtent chères à construire (millions d'€ par km) et sont soumises à d'importants efforts (climat, trafic, etc..).
- Vérification après la réception (notamment la compacité).
- * Pesée hydrostatique, Banc gamma Mesure globale Source nucléaire
- Intérêts de la <u>permittivité</u> ainsi que du modèle de CRIM¹.
- Simulation de la diffraction d'ondes électromagnétiques ⇒ Équations de Maxwell :

$$\begin{array}{l} \nabla \times \underline{\mathcal{E}} = -\underline{M}_i - \partial_t \underline{\mathcal{B}} \\ \nabla \times \underline{\mathcal{H}} = \underline{S}_i + \partial_t \underline{\mathcal{D}} \end{array} \qquad \left| \begin{array}{c} \nabla \cdot \underline{\mathcal{D}} = q_{ev} \\ \nabla \cdot \underline{\mathcal{B}} = 0 \end{array} \right|$$

¹ Se C. FAUCHARD, Estimation of compaction of bituminous mixtures at microwave frequencies, <u>7ème Symp Int sur les ENDGC</u>, (2009)

CONTEXTE ET OBJECTIFS

Thèse en contrat CIFRE financée par Routes de France, en partenariat avec le LMI (INSA -

* Remplacer définitivement le banc gamma

CONTEXTE ET OBJECTIFS

Thèse en contrat CIFRE financée par Routes de France, en partenariat avec le LMI (INSA -

- * Remplacer définitivement le banc gamma
- * Caractériser le comportement diélectrique de tout matériau

CONTEXTE ET OBJECTIFS

Thèse en contrat CIFRE financée par Routes de France, en partenariat avec le LMI (INSA -

- * Remplacer définitivement le banc gamma
- * Caractériser le comportement diélectrique de tout matériau
- * Application à différents domaines scientifiques

CONTEXTE ET OBJECTIFS

Thèse en contrat CIFRE financée par Routes de France, en partenariat avec le LMI (INSA -

- * Remplacer définitivement le banc gamma
- * Caractériser le comportement diélectrique de tout matériau
- * Application à différents domaines scientifiques
- * Modélisation du problème physique

CONTEXTE ET OBJECTIFS

Thèse en contrat CIFRE financée par Routes de France, en partenariat avec le LMI (INSA -

- * Remplacer définitivement le banc gamma
- Caractériser le comportement diélectrique de tout matériau
- * Application à différents domaines scientifiques
- * Modélisation du problème physique
- * Milieu dispersif, simulation d'un domaine non borné

*

Modélisation 000000000

CONTEXTE ET OBJECTIFS

Thèse en contrat CIFRE financée par Routes de France, en partenariat avec le LMI (INSA -Rouen) et le Cerema (équipe ENDSUM).

Remplacer définitivement le banc gamma

- * Caractériser le comportement diélectrique de tout matériau
- * Application à différents domaines scientifiques
- * Modélisation du problème physique
- * Milieu dispersif, simulation d'un domaine non borné
- * Formulation des problèmes directs et de l'inversion

Contexte	objectifs
00	

Nous cherchons à discrétiser les équations de Maxwell pour le régime harmonique en formulation ordre 2, à savoir :

$$\nabla \times \nabla \times \underline{E} - k_0^2 \varepsilon \underline{E} = 0$$
⁽¹⁾

avec \underline{E} le champ électrique, $k_0 = \omega c_0^{-1}$ et ε la permittivité relative.

Nous cherchons à discrétiser les équations de Maxwell pour le régime harmonique en formulation ordre 2, à savoir :

$$\nabla \times \nabla \times \underline{E} - k_0^2 \varepsilon \underline{E} = 0$$
⁽¹⁾

avec <u>E</u> le champ électrique, $k_0 = \omega c_0^{-1}$ et ε la permittivité relative.

Problème de diffraction par ondes sphériques :

Nous cherchons à discrétiser les équations de Maxwell pour le régime harmonique en formulation ordre 2, à savoir :

$$\nabla \times \nabla \times \underline{E} - k_0^2 \varepsilon \underline{E} = 0 \tag{1}$$

avec <u>E</u> le champ électrique, $k_0 = \omega c_0^{-1}$ et ε la permittivité relative.

Problème de diffraction par ondes sphériques :

On considère un champ total \underline{E}^t comme étant la somme d'un champ incident \underline{E}^i et d'un champ diffracté \underline{E}^s . L'équation devient alors :

$$\nabla \times \nabla \times \underline{E}^{t} - k_{0}^{2} \varepsilon \underline{E}^{t} = 0$$

$$\Leftrightarrow \nabla \times \nabla \times \underline{E}^{s} - k_{0}^{2} \varepsilon \underline{E}^{s} = k_{0}^{2} (\varepsilon - 1) \underline{E}^{s}$$

pour un champ incident \underline{E}^i de la forme $\nabla \times \Phi$ avec Φ solution de (1) pour $\varepsilon = 1$, i.e. $\Phi = H_0(k_0 r)$.

Nous cherchons à discrétiser les équations de Maxwell pour le régime harmonique en formulation ordre 2, à savoir :

$$\nabla \times \nabla \times \underline{E} - k_0^2 \varepsilon \underline{E} = 0 \tag{1}$$

avec \underline{E} le champ électrique, $k_0 = \omega c_0^{-1}$ et ε la permittivité relative.

Problème de diffraction par ondes sphériques :

On considère un champ total \underline{E}^t comme étant la somme d'un champ incident \underline{E}^i et d'un champ diffracté \underline{E}^s . L'équation devient alors :

$$\nabla \times \nabla \times \underline{E}^{t} - k_{0}^{2} \varepsilon \underline{E}^{t} = 0$$

$$\Leftrightarrow \nabla \times \nabla \times \underline{E}^{s} - k_{0}^{2} \varepsilon \underline{E}^{s} = k_{0}^{2} (\varepsilon - 1) \underline{E}^{t}$$

pour un champ incident \underline{E}^i de la forme $\nabla \times \Phi$ avec Φ solution de (1) pour $\varepsilon = 1$, i.e. $\Phi = H_0(k_0r)$. Le problème est ensuite discrétisé par une approche éléments finis, basée sur les éléments de Nédelec¹:

$$\left[\mathbb{K} - k_0^2 \mathbb{M}(\varepsilon)\right] \underline{c}\left(\varepsilon\right) = \underline{\mathcal{S}}(\varepsilon)$$

avec $\underline{E}^{s} = \underline{\mathcal{O}} \underline{c} (\varepsilon), \underline{\mathcal{O}}$ un opérateur permettant de reconstruire la solution.

¹ Se P. MONK, Finite Element Methods for Maxwell's Equations, Numer. Analysis, (2005).

PARAMÈTRES S

 L'inversion est réalisée à partir des données de l'analyseur, à savoir les paramètres S (scaterring parameters, rapport entre le champ reçu et le champ émis).

² S. LAMBOT, Model. of GPR for accurate char. of subsurface elec. prop., <u>IEEE Geoscience</u>, 42, (2004).

Contexte	objectifs	
oc		

PARAMÈTRES S

- * L'inversion est réalisée à partir des données de l'analyseur, à savoir les paramètres S (scaterring parameters, rapport entre le champ reçu et le champ émis).
- * Dans notre cas, nous avons la relation entre le champ <u>E</u> simulé et le paramètre S associé (S₂₁):

$$S_{21}^{sim} = < \underline{E}^{sim}, \ \underline{P} >$$

avec \underline{P} un vecteur de polarisation permettant de prendre en compte la rotation des antennes.

² S. LAMBOT, Model. of GPR for accurate char. of subsurface elec. prop., <u>IEEE Geoscience</u>, 42, (2004).

PARAMÈTRES S

- * L'inversion est réalisée à partir des données de l'analyseur, à savoir les paramètres S (scaterring parameters, rapport entre le champ reçu et le champ émis).
- Dans notre cas, nous avons la relation entre le champ <u>E</u> simulé et le paramètre S associé (S₂₁):

$$S_{21}^{sim} = < \underline{E}^{sim}, \ \underline{P} >$$

avec P un vecteur de polarisation permettant de prendre en compte la rotation des antennes.

 Il est également nécessaire de calibrer les antennes², afin de pouvoir inverser correctement sur les paramètres S :

$$S_{21}^{mes, c} = S_{21}^{mes} \left(S_{21}^{mes} \left(H_{f_1} + H_{f_2} \right) + H_{t_1} H_{t_2} \right)^{-1}$$

avec H_{f_i} , H_{t_i} et H_{r_i} les fonctions de transfert de perte, transmission et réception associées à l'antenne *i*.

² S. LAMBOT, Model. of GPR for accurate char. of subsurface elec. prop., <u>IEEE Geoscience</u>, 42, (2004).

* Inversion sur un intervalle de fréquences.

- * Inversion sur un intervalle de fréquences.
- * Données <u>d</u>^{mes} : Paramètre S au récepteur selon l'orientation de l'objet et la fréquence f.

- * Inversion sur un intervalle de fréquences.
- * Données <u>d</u>^{mes} : Paramètre S au récepteur selon l'orientation de l'objet et la fréquence f.
- * Données <u>d</u>^{sim} : Paramètre S au récepteur selon la source s et la fréquence f :

$$d_l = S^{s, f}, \ l = f + sn_f$$

- * Inversion sur un intervalle de fréquences.
- * Données <u>d</u>^{mes} : Paramètre S au récepteur selon l'orientation de l'objet et la fréquence f.
- * Données <u>d</u>^{sim} : Paramètre S au récepteur selon la source s et la fréquence f :

$$d_l = S^{s, f}, \ l = f + sn_f$$

- * Inversion sur un intervalle de fréquences.
- * Données <u>d</u>^{mes} : Paramètre S au récepteur selon l'orientation de l'objet et la fréquence f.
- * Données <u>d</u>^{sim} : Paramètre S au récepteur selon la source s et la fréquence f :

$$d_l = S^{s, f}, \ l = f + sn_f$$

- * Inversion sur un intervalle de fréquences.
- * Données <u>d</u>^{mes} : Paramètre S au récepteur selon l'orientation de l'objet et la fréquence f.
- * Données <u>d</u>^{sim} : Paramètre S au récepteur selon la source s et la fréquence f :

$$d_l = S^{s, f}, \ l = f + sn_f$$

- * Inversion sur un intervalle de fréquences.
- * Données <u>d</u>^{mes} : Paramètre S au récepteur selon l'orientation de l'objet et la fréquence f.
- * Données <u>d</u>^{sim} : Paramètre S au récepteur selon la source s et la fréquence f :

$$d_l = S^{s, f}, \ l = f + sn_f$$

On cherche à résoudre le problème de minimisation suivant :

$$\mathcal{M}\left(\underline{\underline{\varepsilon}}^{*}\right) = \min_{\underline{\underline{\varepsilon}}} \frac{1}{2} ||\underline{d}^{mes} - \underline{\mathcal{F}}\left(\underline{\underline{\varepsilon}}\right)||^{2} + \frac{1}{2} ||\underline{\nabla \underline{\varepsilon}}||^{2}$$

avec $\underline{\mathcal{F}}(\underline{\varepsilon})$ la fonction associée au problème direct, i.e. $\mathcal{F}:\underline{\varepsilon}\in\mathbb{C}^{n_m}\to\underline{d}^{sim}\in\mathbb{C}^{n_d}$. Posons $\underline{r}(\underline{\varepsilon})=\underline{d}^{mes}-\underline{\mathcal{F}}(\underline{\varepsilon})$, la résolution se fait par une approche de type Newton :

On cherche à résoudre le problème de minimisation suivant :

$$\mathcal{M}\left(\underline{\underline{\varepsilon}}^{*}\right) = \min_{\underline{\underline{\varepsilon}}} \frac{1}{2} ||\underline{d}^{mes} - \underline{\mathcal{F}}\left(\underline{\underline{\varepsilon}}\right)||^{2} + \frac{1}{2} ||\underline{\nabla}\underline{\varepsilon}||^{2}$$

avec $\underline{\mathcal{F}}(\underline{\varepsilon})$ la fonction associée au problème direct, i.e. $\mathcal{F}:\underline{\varepsilon}\in\mathbb{C}^{n_m}\to\underline{d}^{sim}\in\mathbb{C}^{n_d}$. Posons $\underline{r}(\underline{\varepsilon})=\underline{d}^{mes}-\underline{\mathcal{F}}(\underline{\varepsilon})$, la résolution se fait par une approche de type Newton :

* Déterminer $\underline{\varepsilon}^*$ par la résolution de

$$\mathcal{M}'(\underline{\varepsilon}) = 0$$

On cherche à résoudre le problème de minimisation suivant :

$$\mathcal{M}\left(\underline{\underline{\varepsilon}}^{*}\right) = \min_{\underline{\underline{\varepsilon}}} \frac{1}{2} ||\underline{d}^{mes} - \underline{\mathcal{F}}\left(\underline{\underline{\varepsilon}}\right)||^{2} + \frac{1}{2} ||\underline{\nabla}\underline{\varepsilon}||^{2}$$

avec $\underline{\mathcal{F}}(\underline{\varepsilon})$ la fonction associée au problème direct, i.e. $\mathcal{F}:\underline{\varepsilon} \in \mathbb{C}^{n_m} \to \underline{d}^{sim} \in \mathbb{C}^{n_d}$. Posons $\underline{r}(\underline{\varepsilon}) = \underline{d}^{mes} - \underline{\mathcal{F}}(\underline{\varepsilon})$, la résolution se fait par une approche de type Newton :

* Déterminer $\underline{\varepsilon}^*$ par la résolution de

$$\mathcal{M}'(\underline{\varepsilon}) = 0$$

* Itération sur $\underline{\varepsilon}$ pour arriver à la solution optimal $\underline{\varepsilon}^*$ avec :

$$\underline{\varepsilon}^{k+1} = \underline{\varepsilon}^k + \underline{\delta\varepsilon}$$

On cherche à résoudre le problème de minimisation suivant :

$$\mathcal{M}\left(\underline{\varepsilon}^{*}\right) = \min_{\underline{\varepsilon}} \frac{1}{2} ||\underline{d}^{mes} - \underline{\mathcal{F}}\left(\underline{\varepsilon}\right)||^{2} + \frac{1}{2} ||\underline{\nabla}\underline{\varepsilon}||^{2}$$

avec $\underline{\mathcal{F}}(\underline{\varepsilon})$ la fonction associée au problème direct, i.e. $\mathcal{F}:\underline{\varepsilon}\in\mathbb{C}^{n_m}\to\underline{d}^{sim}\in\mathbb{C}^{n_d}$. Posons $\underline{r}(\underline{\varepsilon})=\underline{d}^{mes}-\underline{\mathcal{F}}(\underline{\varepsilon})$, la résolution se fait par une approche de type Newton :

* Déterminer $\underline{\varepsilon}^*$ par la résolution de

$$\mathcal{M}'(\underline{\varepsilon}) = 0$$

* Itération sur $\underline{\varepsilon}$ pour arriver à la solution optimal $\underline{\varepsilon}^*$ avec :

$$\underline{\varepsilon}^{k+1} = \underline{\varepsilon}^k + \underline{\delta\varepsilon}$$

* Pour $\underline{\delta \varepsilon}$, on applique une méthode de type Newton-Raphson à $\mathcal{M}'(\underline{\varepsilon})$:

$$\Leftrightarrow \mathcal{M}^{\prime\prime}(\underline{\varepsilon}^k)\underline{\delta\varepsilon} = -\mathcal{M}^{\prime}(\underline{\varepsilon}^k)$$

On cherche à résoudre le problème de minimisation suivant :

$$\mathcal{M}\left(\underline{\varepsilon}^{*}\right) = \min_{\underline{\varepsilon}} \frac{1}{2} ||\underline{d}^{mes} - \underline{\mathcal{F}}\left(\underline{\varepsilon}\right)||^{2} + \frac{1}{2} ||\underline{\nabla}\underline{\varepsilon}||^{2}$$

avec $\underline{\mathcal{F}}(\underline{\varepsilon})$ la fonction associée au problème direct, i.e. $\mathcal{F}:\underline{\varepsilon}\in\mathbb{C}^{n_m}\to\underline{d}^{sim}\in\mathbb{C}^{n_d}$. Posons $\underline{r}(\underline{\varepsilon})=\underline{d}^{mes}-\underline{\mathcal{F}}(\underline{\varepsilon})$, la résolution se fait par une approche de type Newton :

* Déterminer $\underline{\varepsilon}^*$ par la résolution de

$$\mathcal{M}'(\underline{\varepsilon}) = 0$$

* Itération sur $\underline{\varepsilon}$ pour arriver à la solution optimal $\underline{\varepsilon}^*$ avec :

$$\underline{\varepsilon}^{k+1} = \underline{\varepsilon}^k + \underline{\delta\varepsilon}$$

* Pour $\underline{\delta \varepsilon}$, on applique une méthode de type Newton-Raphson à $\mathcal{M}'(\underline{\varepsilon})$:

$$\Leftrightarrow \mathcal{M}''(\underline{\varepsilon}^k)\underline{\delta\varepsilon} = -\mathcal{M}'(\underline{\varepsilon}^k)$$

* $\mathcal{M}'(\underline{\varepsilon}^k) = (\underline{r}')^t \underline{r}$, avec $\underline{r}'(\underline{\varepsilon}) = \frac{\partial \underline{r}}{\partial \underline{\varepsilon}}$, i.e. la jacobienne associée au vecteur \underline{r} notée $\underline{\underline{\mathcal{I}}}$.
APPROXIMATION DE GAUSS-NEWTON

On cherche à résoudre le problème de minimisation suivant :

$$\mathcal{M}\left(\underline{\varepsilon}^{*}\right) = \min_{\underline{\varepsilon}} \frac{1}{2} ||\underline{d}^{mes} - \underline{\mathcal{F}}\left(\underline{\varepsilon}\right)||^{2} + \frac{1}{2} ||\underline{\nabla}\underline{\varepsilon}||^{2}$$

avec $\underline{\mathcal{F}}(\underline{\varepsilon})$ la fonction associée au problème direct, i.e. $\mathcal{F}:\underline{\varepsilon}\in\mathbb{C}^{n_m}\to\underline{d}^{sim}\in\mathbb{C}^{n_d}$. Posons $\underline{r}(\underline{\varepsilon})=\underline{d}^{mes}-\underline{\mathcal{F}}(\underline{\varepsilon})$, la résolution se fait par une approche de type Newton :

* Déterminer $\underline{\varepsilon}^*$ par la résolution de

$$\mathcal{M}'(\underline{\varepsilon}) = 0$$

* Itération sur $\underline{\varepsilon}$ pour arriver à la solution optimal $\underline{\varepsilon}^*$ avec :

$$\underline{\varepsilon}^{k+1} = \underline{\varepsilon}^k + \underline{\delta\varepsilon}$$

* Pour $\underline{\delta \varepsilon}$, on applique une méthode de type Newton-Raphson à $\mathcal{M}'(\underline{\varepsilon})$:

$$\Leftrightarrow \mathcal{M}''(\underline{\varepsilon}^k)\underline{\delta\varepsilon} = -\mathcal{M}'(\underline{\varepsilon}^k)$$

- * $\mathcal{M}'(\underline{\varepsilon}^k) = (\underline{r}')^t \underline{r}$, avec $\underline{r}'(\underline{\varepsilon}) = \frac{\partial \underline{r}}{\partial \underline{\varepsilon}}$, i.e. la jacobienne associée au vecteur \underline{r} notée $\underline{\underline{\mathcal{I}}}$.
- $\ast~$ On approche $\mathcal{M}^{\prime\prime}(\underline{\varepsilon}^k)$ par :

$$\mathcal{M}^{\prime\prime}(\underline{\varepsilon}^{k}) = \underline{\mathcal{J}}^{t}\underline{\mathcal{J}} + \underline{r}^{t}\underline{\mathcal{J}}^{\prime} \simeq \underline{\mathcal{J}}^{t}\underline{\mathcal{J}}$$

Justifié par une approximation raisonnable au voisinage de l'optimum $\underline{\varepsilon}^*$.

Le calcul de $\underline{\mathcal{J}}$ se fait par la méthode d'états adjoints³ :

³ M. BONNET, Identification et inversion, Équipe POEMS, ENSTA Paris, (2020)

Le calcul de $\underline{\mathcal{J}}$ se fait par la méthode d'états adjoints³ :

* $\underline{\mathcal{J}}$ dépend de \underline{c} et donc de $\underline{\varepsilon}$. Sa dérivée composée s'écrit :

$$\underline{\underline{\mathcal{J}}} = \frac{\partial \underline{\underline{r}}}{\partial \underline{\underline{c}}} \ \frac{\partial \underline{\underline{c}}}{\partial \underline{\underline{\varepsilon}}} + \frac{\partial \underline{\underline{r}}}{\partial \underline{\underline{\varepsilon}}} = < \underline{\underline{r}}_1', \ \underline{\underline{c}}'(\underline{\underline{\varepsilon}}) >$$

³ M. BONNET, Identification et inversion, Équipe POEMS, ENSTA Paris, (2020)

Le calcul de $\underline{\mathcal{J}}$ se fait par la méthode d'états adjoints³ :

* $\underline{\mathcal{J}}$ dépend de \underline{c} et donc de $\underline{\varepsilon}$. Sa dérivée composée s'écrit :

$$\underline{\underline{\mathcal{J}}} = \frac{\partial \underline{\underline{r}}}{\partial \underline{\underline{c}}} \ \frac{\partial \underline{\underline{c}}}{\partial \underline{\underline{c}}} + \frac{\partial \underline{\underline{r}}}{\partial \underline{\underline{c}}} = < \underline{\underline{r}}_1', \ \underline{\underline{c}}'(\underline{\underline{c}}) >$$

* On approche \underline{c}' par $\underline{\delta \varepsilon} \, \underline{c}'(\underline{\varepsilon}) = \underline{c}(\underline{\varepsilon} + \underline{\delta \varepsilon}) - \underline{c}(\underline{\varepsilon})$, ce qui nous mène à :

$$\underline{c}'(\underline{\varepsilon}) = \left(\mathbb{K} - k_0^2 \mathbb{M}(\underline{\varepsilon})\right)^{-1} \left(\underline{\mathcal{S}}'(\underline{\varepsilon}) - k_0^2 \mathbb{M}'(\underline{\varepsilon}) \underline{c}(\underline{\varepsilon})\right)$$

³ M. BONNET, Identification et inversion, Équipe POEMS, ENSTA Paris, (2020)

Le calcul de $\underline{\mathcal{J}}$ se fait par la méthode d'états adjoints³ :

* $\underline{\mathcal{J}}$ dépend de \underline{c} et donc de $\underline{\varepsilon}$. Sa dérivée composée s'écrit :

$$\underline{\underline{\mathcal{J}}} = \frac{\partial \underline{\underline{r}}}{\partial \underline{\underline{c}}} \ \frac{\partial \underline{\underline{c}}}{\partial \underline{\underline{c}}} + \frac{\partial \underline{\underline{r}}}{\partial \underline{\underline{c}}} = < \underline{\underline{r}}_1', \ \underline{\underline{c}}'(\underline{\underline{c}}) >$$

* On approche \underline{c}' par $\underline{\delta \varepsilon} \ \underline{c}'(\underline{\varepsilon}) = \underline{c}(\underline{\varepsilon} + \underline{\delta \varepsilon}) - \underline{c}(\underline{\varepsilon})$, ce qui nous mène à :

$$\underline{c}'(\underline{\varepsilon}) = \left(\mathbb{K} - k_0^2 \mathbb{M}(\underline{\varepsilon})\right)^{-1} \left(\underline{\mathcal{S}}'(\underline{\varepsilon}) - k_0^2 \mathbb{M}'(\underline{\varepsilon})\underline{c}(\underline{\varepsilon})\right)$$

* On retrouve alors :

$$\underline{\mathcal{J}}(\underline{\varepsilon}) = < \underline{\tilde{c}}(\underline{\varepsilon}), \ \underline{\mathcal{S}}'(\underline{\varepsilon}) - k_0^2 \mathbb{M}'(\underline{\varepsilon}) \underline{c}(\underline{\varepsilon}) >$$

avec $\underline{\tilde{c}}(\underline{\varepsilon})$ solution du **problème adjoint** suivant :

$$\left(\mathbb{K}-k_0^2\mathbb{M}(\underline{\varepsilon})\right)^t\underline{\tilde{c}}(\underline{\varepsilon})=\underline{r}_1'$$

³ M. BONNET, Identification et inversion, Équipe POEMS, ENSTA Paris, (2020)

Pour une itération k :

Pour une itération k :

• Résolution du problème direct :

$$\left[\mathbb{K} - k_0^2 \mathbb{M}(\underline{\varepsilon}^{(k)})\right] \underline{c}(\underline{\varepsilon}^{(k)}) = \underline{S}(\underline{\varepsilon})$$

Pour une itération k :

• Résolution du problème direct :

$$\left[\mathbb{K} - k_0^2 \mathbb{M}(\underline{\varepsilon}^{(k)})\right] \underline{c}(\underline{\varepsilon}^{(k)}) = \underline{S}(\underline{\varepsilon})$$

• Construction des données $\underline{r} = \underline{d}^{mes, c} - \underline{d}^{sim}$.

Pour une itération k :

• Résolution du problème direct :

$$\left[\mathbb{K} - k_0^2 \mathbb{M}(\underline{\varepsilon}^{(k)})\right] \underline{c}(\underline{\varepsilon}^{(k)}) = \underline{S}(\underline{\varepsilon})$$

- Construction des données $\underline{r} = \underline{d}^{mes, c} \underline{d}^{sim}$.
- Si la norme de <u>r</u> est supérieur à l'erreur autorisée :

Pour une itération k :

• Résolution du problème direct :

$$\left[\mathbb{K} - k_0^2 \mathbb{M}(\underline{\varepsilon}^{(k)})\right] \underline{c}(\underline{\varepsilon}^{(k)}) = \underline{S}(\underline{\varepsilon})$$

- Construction des données $\underline{r} = \underline{d}^{mes, c} \underline{d}^{sim}$.
- Si la norme de <u>r</u> est supérieur à l'erreur autorisée :
 - * Construction de la matrice $\underline{\mathcal{J}}$

$$\underline{\mathcal{J}} = < \underline{\tilde{c}}(\underline{\varepsilon}), \ \underline{\mathcal{S}}'(\underline{\varepsilon}) - k_0^2 \mathbb{M}'(\underline{\varepsilon}) \underline{c}(\underline{\varepsilon}) >$$

Pour une itération k :

• Résolution du problème direct :

$$\left[\mathbb{K} - k_0^2 \mathbb{M}(\underline{\varepsilon}^{(k)})\right] \underline{c}(\underline{\varepsilon}^{(k)}) = \underline{S}(\underline{\varepsilon})$$

- Construction des données $\underline{r} = \underline{d}^{mes, c} \underline{d}^{sim}$.
- Si la norme de <u>r</u> est supérieur à l'erreur autorisée :
 - * Construction de la matrice $\underline{\mathcal{J}}$

$$\underline{\underline{\mathcal{J}}} = < \underline{\underline{\tilde{c}}}(\underline{\varepsilon}), \ \underline{\underline{\mathcal{S}}}'(\underline{\varepsilon}) - k_0^2 \mathbb{M}'(\underline{\varepsilon}) \underline{\underline{c}}(\underline{\varepsilon}) >$$

* Résolution du système

$$\underline{\underline{\mathcal{J}}}^t \underline{\underline{\mathcal{J}}} \ \underline{\underline{\delta}} \underline{\varepsilon} + \underline{\underline{\mathcal{J}}}^t \underline{r} = 0$$

Pour une itération k :

• Résolution du problème direct :

$$\left[\mathbb{K} - k_0^2 \mathbb{M}(\underline{\varepsilon}^{(k)})\right] \underline{c}(\underline{\varepsilon}^{(k)}) = \underline{S}(\underline{\varepsilon})$$

- Construction des données $\underline{r} = \underline{d}^{mes, c} \underline{d}^{sim}$.
- Si la norme de <u>r</u> est supérieur à l'erreur autorisée :
 - * Construction de la matrice $\underline{\mathcal{J}}$

$$\underline{\underline{\mathcal{J}}} = < \underline{\underline{\tilde{c}}}(\underline{\varepsilon}), \ \underline{\underline{\mathcal{S}}}'(\underline{\varepsilon}) - k_0^2 \mathbb{M}'(\underline{\varepsilon}) \underline{\underline{c}}(\underline{\varepsilon}) >$$

* Résolution du système

$$\underbrace{\underline{\mathcal{J}}^{t}\underline{\mathcal{J}}}_{\underline{\underline{\mathcal{J}}}}\underline{\underline{\delta}\varepsilon} + \underline{\underline{\mathcal{J}}}^{t}\underline{\underline{r}} = 0$$

* Mise à jour de $\underline{\varepsilon}$:

$$\underline{\varepsilon}^{(k+1)} = \underline{\varepsilon}^{(k)} + \underline{\delta\varepsilon}$$

* Permet de bien conditionner le problème.

- * Permet de bien conditionner le problème.
- * Ajout d'une information pertinente sur la solution recherchée (sous forme de laplacien, permet d'éviter une différence trop forte entre les valeurs de permittivité).

- * Permet de bien conditionner le problème.
- * Ajout d'une information pertinente sur la solution recherchée (sous forme de laplacien, permet d'éviter une différence trop forte entre les valeurs de permittivité).
- Pour un maillage type éléments finis, le laplacien se traduit par un schéma différence finis associé aux éléments voisins par arête, i.e. :

- * Permet de bien conditionner le problème.
- * Ajout d'une information pertinente sur la solution recherchée (sous forme de laplacien, permet d'éviter une différence trop forte entre les valeurs de permittivité).
- Pour un maillage type éléments finis, le laplacien se traduit par un schéma différence finis associé aux éléments voisins par arête, i.e. :

$$\Delta \varepsilon = \varepsilon - \frac{b_0}{3} \varepsilon_i - \frac{b_1}{3} \varepsilon_j - \frac{b_2}{3} \varepsilon_k$$

	Quadratique	Semi-quadratique ⁴
Valeur	$\underline{b} = 1$	$\frac{b}{f(x)} = f(\nabla \varepsilon_i - \nabla \varepsilon_j)$ $f(x) = c_1(c_2 + x^2)^{-1}$
Avantages		

Inconvénients

⁴ S P. CHARBONNIER, Reconstruction d'image : régularisation avec prise en compte des discontinuités, <u>Équipe ENDSUM, Cerema</u> Strasbourg, (1994)

	Quadratique	Semi-quadratique ⁴
Valeur	$\underline{b} = 1$	$\frac{b}{f(x)} = f(\nabla \varepsilon_i - \nabla \varepsilon_j)$ $f(x) = c_1(c_2 + x^2)^{-1}$
Avantages	· Mise en place	

Inconvénients

⁴ S P. CHARBONNIER, Reconstruction d'image : régularisation avec prise en compte des discontinuités, <u>Équipe ENDSUM, Cerema</u> Strasbourg, (1994)

	Quadratique	Semi-quadratique ⁴
Valeur	$\underline{b} = 1$	$\frac{\underline{b} = f(\nabla \varepsilon_i - \nabla \varepsilon_j)}{f(x) = c_1(c_2 + x^2)^{-1}}$
Avantages	· Mise en place	
nconvénients	. Convergence lente	

⁴ [€] P. CHARBONNIER, Reconstruction d'image : régularisation avec prise en compte des discontinuités, <u>Équipe ENDSUM, Cerema</u> <u>Strasbourg</u>, (1994)

	Quadratique	Semi-quadratique ⁴
Valeur	$\underline{b} = 1$	$\frac{\underline{b} = f(\nabla \varepsilon_i - \nabla \varepsilon_j)}{f(x) = c_1(c_2 + x^2)^{-1}}$
Avantages	• Mise en place	Accentue les contrastes dans l'image
Inconvénients	Convergence lente	

⁴ Se P. CHARBONNIER, Reconstruction d'image : régularisation avec prise en compte des discontinuités, <u>Équipe ENDSUM, Cerema</u> Strasbourg, (1994)

CHOIX DES COEFFICIENTS \underline{b}

	Quadratique	Semi-quadratique ⁴
Valeur	$\underline{b} = 1$	$\frac{b = f(\nabla \varepsilon_i - \nabla \varepsilon_j)}{f(x) = c_1(c_2 + x^2)^{-1}}$
Avantages	· Mise en place	Accentue les contrastes dans l'image
		S'applique en post- traitement
Inconvénients	Convergence lente	

⁴ S P. CHARBONNIER, Reconstruction d'image : régularisation avec prise en compte des discontinuités, <u>Équipe ENDSUM, Cerema</u> Strasbourg, (1994)

CHOIX DES COEFFICIENTS \underline{b}

	Quadratique	Semi-quadratique ⁴
Valeur	$\underline{b} = 1$	$\frac{\underline{b} = f(\nabla \varepsilon_i - \nabla \varepsilon_j)}{f(x) = c_1(c_2 + x^2)^{-1}}$
Avantages	· Mise en place	Accentue les contrastes dans l'image
		· S'applique en post- traitement
Inconvénients	· Convergence lente	• Choix des coefficients c_i

⁴ [€] P. CHARBONNIER, Reconstruction d'image : régularisation avec prise en compte des discontinuités, <u>Équipe ENDSUM, Cerema</u> <u>Strasbourg</u>, (1994)

Application au banc EM

PREMIER CAS : CAROTTE DE BÉTON BITUMINEUX

* Inversion sur les données du banc, pour une hauteur donnée (coupe 2D)

PREMIER CAS : CAROTTE DE BÉTON BITUMINEUX

- * Inversion sur les données du banc, pour une hauteur donnée (coupe 2D)
- * Intervalle de fréquences : [2.8 ; 4,6] GHz

PREMIER CAS : CAROTTE DE BÉTON BITUMINEUX

- * Inversion sur les données du banc, pour une hauteur donnée (coupe 2D)
- * Intervalle de fréquences : [2.8 ; 4,6] GHz
- * $d = 15 \text{ cm}, \overline{\varepsilon}_{bb} \in [3; 7]$

PREMIER CAS : CAROTTE DE BÉTON BITUMINEUX

- * Inversion sur les données du banc, pour une hauteur donnée (coupe 2D)
- * Intervalle de fréquences : [2.8 ; 4,6] GHz
- * $d = 15 \text{ cm}, \overline{\varepsilon}_{bb} \in [3 ; 7]$

Échantillon

PREMIER CAS : CAROTTE DE BÉTON BITUMINEUX

- * Inversion sur les données du banc, pour une hauteur donnée (coupe 2D)
- * Intervalle de fréquences : [2.8 ; 4,6] GHz
- * $d = 15 \text{ cm}, \overline{\varepsilon}_{bb} \in [3; 7]$

Application au banc EM

PREMIER CAS : CAROTTE DE BÉTON BITUMINEUX

- * Inversion sur les données du banc, pour une hauteur donnée (coupe 2D)
- * Intervalle de fréquences : [2.8 ; 4,6] GHz
- * $d = 15 \text{ cm}, \overline{\varepsilon}_{bb} \in [3; 7]$

* Inversion sur les données du banc, pour une hauteur donnée (coupe 2D)

- * Inversion sur les données du banc, pour une hauteur donnée (coupe 2D)
- * Intervalle de fréquences : [2.8 ; 4,6] GHz

Contexte	objectifs
00	

- * Inversion sur les données du banc, pour une hauteur donnée (coupe 2D)
- * Intervalle de fréquences : [2.8 ; 4,6] GHz
- * $d_s = 11.5 \text{ cm}, \overline{\varepsilon}_{sable} \in [2.5; 3.5]$

Contexte	objectifs
00	

- * Inversion sur les données du banc, pour une hauteur donnée (coupe 2D)
- * Intervalle de fréquences : [2.8 ; 4,6] GHz
- * $d_s = 11.5 \text{ cm}, \overline{\varepsilon}_{\text{sable}} \in [2.5; 3.5]$
- * $d_{bb} = 5 \text{ cm}, \overline{\varepsilon}_{bb} \in [3; 7]$

Contexte	objectifs
00	

- * Inversion sur les données du banc, pour une hauteur donnée (coupe 2D)
- * Intervalle de fréquences : [2.8 ; 4,6] GHz
- * $d_s = 11.5 \text{ cm}, \overline{\varepsilon}_{\text{sable}} \in [2.5 ; 3.5]$
- * $d_{bb} = 5 \text{ cm}, \overline{\varepsilon}_{bb} \in [3; 7]$

Échantillon

- * Inversion sur les données du banc, pour une hauteur donnée (coupe 2D)
- * Intervalle de fréquences : [2.8 ; 4,6] GHz
- * $d_s = 11.5 \text{ cm}, \overline{\varepsilon}_{\text{sable}} \in [2.5 ; 3.5]$
- * $d_{bb} = 5 \text{ cm}, \overline{\varepsilon}_{bb} \in [3; 7]$

Échantillon

- * Inversion sur les données du banc, pour une hauteur donnée (coupe 2D)
- * Intervalle de fréquences : [2.8 ; 4,6] GHz
- * $d_s = 11.5 \text{ cm}, \overline{\varepsilon}_{sable} \in [2.5; 3.5]$
- * $d_{bb} = 5 \text{ cm}, \overline{\varepsilon}_{bb} \in [3; 7]$

Map de la permittivité initiale et ses coefficients <u>b</u> associés

Map de la permittivité et ses coefficients <u>b</u> associés, itération 0

Map de la permittivité et ses coefficients <u>b</u> associés, itération 1

Map de la permittivité et ses coefficients <u>b</u> associés, itération 2

Map de la permittivité et ses coefficients <u>b</u> associés, itération 3

QUESTIONS ?

- E. FAUCHARD, Estimation of compaction of bituminous mixtures at microwave frequencies, 7ème Symp Int sur les ENDGC, (2009).
- P. MONK, Finite Element Methods for Maxwell's Equations, Numer. Analysis, (2005).
- S. LAMBOT, Model. of GPR for accurate char. of subsurface elec. prop., IEEE Geoscience, 42, (2004).
- M. BONNET, Identification et inversion, Équipe POEMS, ENSTA Paris, (2020).
- P. CHARBONNIER, Reconstruction d'image : régularisation avec prise en compte des discontinuités, Équipe ENDSUM, Cerema Strasbourg, (1994).

QUESTIONS ?

- C. FAUCHARD, Estimation of compaction of bituminous mixtures at microwave frequencies, 7ème Symp Int sur les ENDGC, (2009).
- P. MONK, Finite Element Methods for Maxwell's Equations, Numer. Analysis, (2005).
- S. LAMBOT, Model. of GPR for accurate char. of subsurface elec. prop., IEEE Geoscience, 42, (2004).
- M. BONNET, Identification et inversion, Équipe POEMS, ENSTA Paris, (2020).
- P. CHARBONNIER, Reconstruction d'image : régularisation avec prise en compte des discontinuités, Équipe ENDSUM, Cerema Strasbourg, (1994).

Merci pour votre attention !