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Introduction

Discretize the interval [0, T ] in N sub-intervals of same length ∆t

N + 1 interpolation nodes t0, t1, . . . , tN with values g0, g1, . . . , gN

Goal: Reconstruct the unknown function g using splines

t0 = 0 t1
. . .

tj tj+1
. . .

tN = T
t

Figure: Interpolation nodes on the considered mesh.
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Spline interpolation

Splines

The function gθ : [0, T ] → R is said to be a spline of degree θ obtained
from N + 1 interpolation nodes of the function g if [Ahlberg et al., 1967]

1 gθ(tj) = g(tj) for all j = 0, 1, . . . , N ;

2 gθ and its derivatives, up to the (θ − 1)-th derivative, are continuous
on [0, T ].

3 gθ consists of N polynomials of degree θ defined on every interval
[tj , tj+1];

Figure: Example of a function that is not a spline.
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Spline interpolation

Figure: Example of a cubic spline with natural boundary conditions
[De Boor, 1978]
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A new method for spline interpolation of any degree

Method to construct splines of degree θ

[Beaudoin, 1998, Beaudoin and Beauchemin, 2003]

Numerically observed that they were splines;

θ must be an odd integer;

Boundary conditions: bn = g
(n)
N − g

(n)
0 , for n = 0, 1, . . . , θ − 1.

[Pepin et al., 2020]

Proof of continuity for piecewise polynomials; New

θ can be odd or even, under certain conditions; New

[Pepin et al., 2022] Algorithms to compute the boundary conditions
bn. New
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A new method for spline interpolation of any degree Approximation of the derivatives

Linear system to solve:
J1,k J2,k . . . Jθ,k

J0,k J1,k . . . Jθ−1,k
...

... . . . ...
0 0 . . . J1,k




f1,k,θ

f2,k,θ
...

fθ,k,θ

 =


b0
b1
...

bθ−1

+


−J0,kf0,k,θ

0
...
0



which is of the form:
Mθ,kFθ,k = B + Ck

where

(Fθ,k)β,1 = fβ,k,θ =
N−1∑
j=0

g
(β)
j,θ e−i2π kj

N , β = 1, 2, . . . , θ

k = 0, 1, . . . , N − 1
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A new method for spline interpolation of any degree Approximation of the derivatives

The matrix Mθ,k is of a Toeplitz-Hessenberg matrix [Merca, 2013]

From [Cahill et al., 2002], the determinant of Mθ,k is given by

det(Mθ,k) = J1,k det(Mθ−1,k) +
θ−1∑
r=1

(−1)θ−rJθ+1−r,k(J0,k)θ−r det(Mr−1,k)

où

Jp,k =


e−i2π k

N − 1, si p = 0
(∆t)p

p! e−i2π k
N , si p > 0

Goal : simplify det(Mθ,k)
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A new method for spline interpolation of any degree Approximation of the derivatives

From [Pepin et al., 2020]

det(Mθ,k) = (∆t)θ

θ!

θ∑
α=1

〈
θ

α − 1

〉(
e−i2π k

N

)θ+1−α

with 〈
θ

α − 1

〉
=

α−1∑
s=0

(−1)s (θ + 1)!
(θ − s)!s! (α − s)θ

Conclusion:

det(Mθ,k) = 0 ⇐⇒ k = N

2 and θ are even integers

It is then possible to compute the numerical derivatives of g when
N and θ are not simultaneously chosen as even integers. New
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A new method for spline interpolation of any degree Continuity of the piecewise polynomials

The piecewise polynomials are built from truncated Taylor series:[
g(β)

]θ
j

(t) =
θ−β∑
p=0

(t − tj)p

p! g
(p+β)
j,θ , t ∈ [tj , tj+1[

où β = 0, 1, . . . , θ.

The numerical derivatives g
(β)
j,θ are computed in such a way that the

polynomials connect smoothly at every interpolation node.

Green curve: θ = 3 Purple curve: θ = 6 Orange curve: θ = 9

Table: b0 = gN − g0 and bn = 0, n = 1, 2, . . . , θ − 1.
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A new method for spline interpolation of any degree Algorithms to approximate the boundary conditions

Algorithms to approximate the boundary conditions

Methods based on:
min

B
∥gθ(t) − gθ−1(t)∥2

2

A. Pepin May 23rd, 2023 11 / 21



A new method for spline interpolation of any degree Algorithms to approximate the boundary conditions

(a) g(t) = sin(3t)e−t (b) g(t) = 2 exp
(
−500(t − 1

2 )2)+ exp
(
− 7

2 t
)

A. Pepin May 23rd, 2023 12 / 21



A new method for spline interpolation of any degree Algorithms to approximate the boundary conditions

OM: Our method Function: g(t) = sin(3t)e−t on [0, 2π]
NS: Natural boundary conditions
NAK: Not-a-knot boundary conditions

N Error OM NS NAK

31 Emax
θ 2.43 × 10−03 1.31 × 10−02 3.59 × 10−03

Eavg
θ 9.44 × 10−05 4.03 × 10−04 1.28 × 10−04

101 Emax
θ 1.07 × 10−04 1.15 × 10−03 3.92 × 10−05

Eavg
θ 1.19 × 10−06 1.08 × 10−05 5.65 × 10−07

501 Emax
θ 9.79 × 10−07 4.63 × 10−05 6.65 × 10−08

Eavg
θ 2.21 × 10−09 8.69 × 10−08 5.18 × 10−10

Table: θ = 3

N Error OM

31 Emax
θ 5.51 × 10−04

Eavg
θ 1.80 × 10−05

101 Emax
θ 6.08 × 10−07

Eavg
θ 6.20 × 10−09

501 Emax
θ 7.15 × 10−11

Eavg
θ 1.54 × 10−13

Table: θ = 5

A. Pepin May 23rd, 2023 13 / 21



A new method for spline interpolation of any degree Algorithms to approximate the boundary conditions

Function : g(t) = sin(3t)e−t on [0, 2π]

N Error Our method

31 Emax
θ 4.11 × 10−06

Eavg
θ 9.37 × 10−08

101 Emax
θ 1.13 × 10−11

Eavg
θ 7.80 × 10−14

501 Emax
θ 4.67 × 10−19

Eavg
θ 6.53 × 10−22

Table: θ = 11
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A new method for spline interpolation of any degree Algorithms to approximate the boundary conditions

Function: g(t) = 2 exp
(
−500(t − 1

2)2
)

+ exp
(
−7

2 t
)

on [0, 1]

N Error Our method

31 Emax
θ 7.43 × 10−01

Eavg
θ 3.73 × 10−02

101 Emax
θ 1.17 × 10−10

Eavg
θ 5.51 × 10−12

501 Emax
θ 9.71 × 10−20

Eavg
θ 4.08 × 10−21

Table: θ = 11
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A new method for spline interpolation of any degree Algorithms to approximate the boundary conditions

Solution: we need to add more interpolation nodes.

Figure: Distribution of N + 1 = 32 interpolation nodes on the interval [0, 1] of the

function g(t) = 2 exp
(

−500
(

t − 1
2

)2
)

+ exp
(

−7
2 t

)
.
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Concluding remarks

Conclusions
New method to compute higher degree splines;

Continuity of the piecewise polynomials has been formally
demonstrated;
The determinant of the matrix Mθ,k has been analyzed;
Algorithms for the approximation of the boundary conditions has been
developed.

Future projects: generalization to non equidistant nodes,
generalization to higher dimension interpolation, in-depth study of the
algorithms for the calculation of the boundary conditions, ...
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Bonus material

Figure: Relative computational cost for Algorithms 1 and 2 [Pepin et al., 2022].
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(a) Example 1 (b) Example 2

Figure: Relative accuracy gain (θ = 11 vs θ = 3) in terms of N .
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