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o Discretize the interval [0,7] in N sub-intervals of same length At

Figure: Interpolation nodes on the considered mesh.
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o Discretize the interval [0,7] in N sub-intervals of same length At
»gN

@ N + 1 interpolation nodes g, t1,...,tN with values gg, g1, ...
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o Discretize the interval [0,7] in N sub-intervals of same length At
»gN

@ N + 1 interpolation nodes g, t1,...,tN with values gg, g1, ...
@ Goal: Reconstruct the unknown function g using splines

[ J
PY b gj+1
g1 Yi
{
g0 ([ J
9N
f f f f f f f t
to=20 t1 t; tit1 ) tn=1T
>
At

Figure: Interpolation nodes on the considered mesh.
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Spline interpolation

Splines

The function gy : [0,7] — R is said to be a spline of degree 6 obtained
from N + 1 interpolation nodes of the function g if [Ahlberg et al., 1967]
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Spline interpolation

Splines

The function gy : [0,7] — R is said to be a spline of degree 6 obtained
from N + 1 interpolation nodes of the function g if [Ahlberg et al., 1967]

Q go(tj) =g(t;) forall j=0,1,...,N;

@ gp and its derivatives, up to the (6§ — 1)-th derivative, are continuous
on [0,T].

© gy consists of N polynomials of degree 6 defined on every interval
[tj: il

—4+—

Figure: Example of a function that is not a spline.
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Spline interpolation

Figure: Example of a cubic spline with natural boundary conditions
[De Boor, 1978]
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A new method for spline interpolation of any degree

Method to construct splines of degree 6

e [Beaudoin, 1998, Beaudoin and Beauchemin, 2003]
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A new method for spline interpolation of any degree

Method to construct splines of degree 6

e [Beaudoin, 1998, Beaudoin and Beauchemin, 2003]

o Numerically observed that they were splines;

e 6 must be an odd integer;

e Boundary conditions: b, = gj(\T,L) — g(()n), forn=0,1,...,0 — 1.
@ [Pepin et al., 2020]

e Proof of continuity for piecewise polynomials; New

e 0 can be odd or even, under certain conditions; New

@ [Pepin et al., 2022] Algorithms to compute the boundary conditions
b,. New
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A new method for spline interpolation of any degree Approximation of the derivatives

Linear system to solve:

Jig Jag oo Jok | | frre bo —Jokfo ke
Jok Jig - Jo—ik| | fore b1 0

. . . . . = . + .

0 0 ... Jig | |fore bo—1 0
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A new method for spline interpolation of any degree Approximation of the derivatives

Linear system to solve:

Jig Jag oo Jok | | frre bo —Jokfo ke
Jok Jig - Jo—ik| | fore b1 0

. . . . . = . + .

0 0 ... Jig | |fore bo—1 0

which is of the form:
My pFyr = B+ Cy

where

kj

N-1
(For)p1 = fomo =D gﬁ)e’mW B=1,2,...,0
j=0
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A new method for spline interpolation of any degree Approximation of the derivatives

@ The matrix My, is of a Toeplitz-Hessenberg matrix [Merca, 2013]
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A new method for spline interpolation of any degree Approximation of the derivatives

@ The matrix My, is of a Toeplitz-Hessenberg matrix [Merca, 2013]

e From [Cahill et al., 2002], the determinant of Mj, is given by

6—1
det(Mch) =ik det(Mofl,k) + Z(—1)6_TJ9+1,T7]C(J0,]€)0_T det(Mr—l,k)
r=1
ol .
e TN — 1, sip=20
Jp,k = (At)p

. k .
LN sip>0

e Goal : simplify det(Mjp)
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A new method for spline interpolation of any degree Approximation of the derivatives

From [Pepin et al., 2020]

det(Mp 1) Z <a 7 1> ( iQw%)GH—a

a=1

0 e 0+ 1)!
<a — 1> - Z(_l)s ((9 —+s)!)s! (o= 5)0

with
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From [Pepin et al., 2020]

det(Mg k Z <a B 1> ( i27r%>9+1—a
a=1
with ) )
0 = s (6+1)
<a - 1> - z::(_l) ((9 —s)ls! (o= )"
Conclusion:

N
det(Mpr) =0 <= k= 5 and ¢ are even integers
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A new method for spline interpolation of any degree Approximation of the derivatives

From [Pepin et al., 2020]

0 —a
det(Mp i) = Z <a 3 1> ( —¢2w£>6+1
a=1
with )
0 . s (0+1)!
<oz - 1> - Z::(_l) ((9 —s)ls! (o= )"
Conclusion:

N
det(Mpr) =0 <= k= 5 and ¢ are even integers

It is then possible to compute the numerical derivatives of ¢ when
N and 0 are not simultaneously chosen as even integers. New
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A new method for spline interpolation of any degree Continuity of the piecewise polynomials

@ The piecewise polynomials are built from truncated Taylor series:

0-p
0 t—t;)P
{Q(B)L ()= (p,])gj('f«;rﬁ)a t € [ty tjsl
p=0 ’

ot =0,1,...,0.
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A new method for spline interpolation of any degree Continuity of the piecewise polynomials

@ The piecewise polynomials are built from truncated Taylor series:
05

0 (L=t)" (pes
{Q(B)L ()= Tjgj% ), t € [ty tjsl
p=0 ’
ot =0,1,...,0.
@ The numerical derivatives g§%) are computed in such a way that the

polynomials connect smoothly at every interpolation node.
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A new method for spline interpolation of any degree Continuity of the piecewise polynomials

@ The piecewise polynomials are built from truncated Taylor series:

0-p
0 t—t;)P
{Q(B)L ()= (p,])gj('f«;rﬁ)a t € [ty tjsl
p=0 ’

ot =0,1,...,0.

@ The numerical derivatives g](ﬂ@) are computed in such a way that the

polynomials connect smoothly at every interpolation node.

Green curve: 8§ =3 Purple curve: § =6 Orange curve: 6 =9

Table: bg =gy —gop and b, =0, n=1,2,...,0 — 1.
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Algorithms to approximate the boundary conditions

Methods based on:

min | g (t) — go-1(1)|l3

0.5+
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LAY TS ToTe IR T TR [T TSRV ASTE T VAT N RETIVA [(Ill  Algorithms to approximate the boundary conditions

(a) g(t) = sin(3t)e™" (b) g(t) = 2exp(—50()(t - %)2) + exp(—gt)
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A new method for spline interpolation of any degree Algorithms to approximate the boundary conditions

OM: Our method

Function: g(t) = sin(3t)e~! on [0, 27]
NS: Natural boundary conditions
NAK: Not-a-knot boundary conditions

N [ Error OM NS NAK
g1 | EE¥ [ 243 x107% [ 1.31 x 107" | 3.59 x 10~
E;® 1944 %107 [ 4.03x 1079 [ 1.28 x 10~ ™
101 LEE= | 107 x 1071 | 115 x 1079 | 3.92 x 10~%°
E;® [119x 1077 [ 1.08 x 10~ | 5.65 x 1077
so1 L8 979 x 1077 | 4.63 x 10-% | 6.65 x 10°%
E;® [221x107"7 [ 8.69x 107 [ 518 x 10~ ™0
Table: 8 =3
N | Error oM
g | Ea> [ 551 x 107"
EJ® 180 x 10°™
Er> [ 6.08x 10777
101 w6 30 % 107
Ep> [ 715 x 1011
501 EJ® [154x 1071
Table: 8 =5
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LAY TS ToTe IR T TR [T TSRV ASTE T VAT N RETIVA [(Ill  Algorithms to approximate the boundary conditions

Function : g(t) = sin(3t)e™" on [0, 27]

N | Error | Our method

g1 LEG | 411X 107%
E;® 1937 x1078

101 Eg:ax 1.13 x 10~ 1
E;® | 780 x 1071

“01 EPa | 4.67 x 10719
E;® | 6.53 x 10~ %2
Table: 6 =11
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A new method for spline interpolation of any degree Algorithms to approximate the boundary conditions

Function: ¢(t) = 2exp(—500(t — 3)2) + exp(—2t) on [0, 1
2 2

N | Error | Our method

g |Eg> | 743 x 10701
E;® | 373 x 107"

o1 |EE 117 x 1010
E;® | 551 x 1012

501 | Lo | 971 1020
E;"® | 4.08 x 10
Table: 6 =11
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LAY TS ToTe IR T TR [T TSRV ASTE T VAT N RETIVA [(Ill  Algorithms to approximate the boundary conditions

Function: ¢(t) = 2exp(—500(t — 3)2) + exp(—2t) on [0, 1
2 2

N | Error | Our method

g BT ] 743 x 107"
E;® | 3.73 x 1070

o1 |EE 117 x 1010
E;® | 551 x 1012

501 | Lo | 9-TL x 1072
Ey® | 4.08 x 10771
Table: 6 =11

May 23rd, 2023
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LAY TS ToTe IR T TR [T TSRV ASTE T VAT N RETIVA [(Ill  Algorithms to approximate the boundary conditions

Solution: we need to add more interpolation nodes.

Figure: Distribution of N + 1 = 32 interpolation nodes on the interval [0, 1] of the

. 1\° 7
function g(t) = 2exp| —500 ( ¢t — 3 + exp _Et .
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Concluding remarks

Conclusions

@ New method to compute higher degree splines;
e Continuity of the piecewise polynomials has been formally
demonstrated;
o The determinant of the matrix My ;, has been analyzed;
e Algorithms for the approximation of the boundary conditions has been
developed.

@ Future projects: generalization to non equidistant nodes,
generalization to higher dimension interpolation, in-depth study of the
algorithms for the calculation of the boundary conditions, ...
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Bonus material

Method 1 : relative computational cost Method 2 : relative computational cost
30
—e—0 =14
8f|—=—0=5
——0=06
TF|l—e—0=T

——8 = 8|

>

N

Relative computational cost
o o

Relative computational cost

30 40 50 60 70 80 % 100 110 110

Figure: Relative computational cost for Algorithms 1 and 2 [Pepin et al., 2022].
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Bonus material
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(a) Example 1 (b) Example 2

Figure: Relative accuracy gain (6 = 11 vs 6 = 3) in terms of N.
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