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Formulation Scheme and result Illustrations

Setting of the problem

Let T > 0. We consider the solution V = V (t, x) of

min
(
− ∂tV +max

a∈A
⟨∇V, f(x, a)⟩ , V − g(x)

)
= 0, V (T, x) = max (J(x), g(x)) . (HJ)

hyp]hyp:struct

(A1)

Notations and running assumptions Here
• A ⊂ Rκ is a compact set, and A[t,T ] the set of measurable a(·) : [t, T ] → A,

• f : Rd×A → TRd is a Lipschitz dynamic such that f(x,A) is convex ∀x ∈ Rd,
• The obstacle function g : Rd → R and terminal cost J : Rd → R are Lipschitz.

Well-posedness ([ABZ13]) There exists an unique continuous viscosity solution of (HJ).
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Formulation Scheme and result Illustrations

Origin of the problem (1/3)

Let f0 : Rd−1 ×A → TRd−1, choose an "admissible" closed set K ⊂ Rd−1 and denote

Bξ,[t,T ] :=
{
a(·) ∈ A[t,T ]

∣∣∣ γt,ξ,as ∈ K ∀s ∈ [t, T ], γ̇t,ξ,as = f0(γ
t,ξ,a
s , a(s)), γt,ξ,at = ξ

}
.

State-constrained control problem Let L, J : Rd−1 → R be Lipschitz, and

Find a∗ ∈ B[t,T ] that minimizes a 7→
∫ T

s=t
L
(
γt,ξ,as

)
ds+ J

(
γt,ξ,aT

)
over all a(·) ∈ B[t,T ].

Introduce the corresponding value function

u(t, ξ) := inf

{∫ T

s=t
L
(
γt,ξ,as

)
ds+ J

(
γt,ξ,aT

) ∣∣∣∣ a(·) ∈ B[t,T ]

}
.
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Formulation Scheme and result Illustrations

Origin of the problem (2/3)

hyp]hyp:structK
(A2) Assume K = {g0 ⩽ 0}, where g0 : Rd−1 → R is Lipschitz.

Let then

x = (ξ, z) , f(x, a) := (f0(ξ, a), L(ξ)) , g(x) = g0(ξ), J(x) = J(ξ)− z.

Let again yt,x,a· solve ẏs = f(yx, a(s)). Introduce the auxilliary map

V (t, x) := inf

{
max

(
J
(
yt,x,aT

)
, max
s∈[t,T ]

g
(
yt,x,as

)) ∣∣∣∣ a(·) ∈ A[t,T ]

}
.

Link between both ([ABZ13]) The auxilliary map V solves (HJ), and there holds

u(t, ξ) = inf {z ∈ R | V (t, (ξ, z)) ⩽ 0} (with the convention inf(∅) = +∞.)
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Formulation Scheme and result Illustrations

Origin of the problem (3/3)

Example We want to minimize ξ 7→ |γt,ξ,aT |, where γ̇t,ξ,as = a(s) and |γ| ⩾ 1. Let
A = [−1, 1], f0(ξ, a) := a, L = 0, J(ξ) = |ξ| and g0(ξ) = 1− |ξ|.

The auxilliary problem reads

V (t, x) = inf
a∈A[t,T ]

{∣∣∣yt,x,aT

∣∣∣∨ max
s∈[t,T ]

(
1−

∣∣yt,x,as

∣∣)} ,

{
(−∂tV + |∂x1V |) ∧ (V − g) = 0,

V (T, x) = (|x1| − x2) ∨ (1− |x1|).
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Formulation Scheme and result Illustrations

Dynamical formulation ([ABZ13])

Dynamic programming principle For all (t, x) ∈ [0, T ]× Rd and h ∈ [0, T − t],

V (t, x) = inf

{
V (t+ h, yt,x,at+h )

∨
max

s∈[t,t+h]
g
(
yt,x,as

) ∣∣∣∣ a(·) ∈ A[t,t+h]

}
. (DPP)

Let N ∈ N, ∆t = T/N and tn = n∆t. Introduce a first discretization of (DPP) by

V n(x) := inf
{
V n+1(F a

∆t(x))
∨

Ga
∆t(x)

∣∣∣ a ∈ Mes(Rd, A)
}
, V N (x) = J(x) ∨ g(x),

where F a
∆t(x) is a consistant approximation of yt,x,at+∆t, and Ga

∆t(x) approximates max
s∈[t,T ]

g(yt,x,as ).

Under natural assumptions, V n(x) → V (tn, x) locally uniformly when ∆t → 0.
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Formulation Scheme and result Illustrations

Expression

Let (tn)n∈J0,NK be a discretization of [0, T ], and Ân
Θ ⊂ Mes

(
Rd, A

)
be approximation spaces.

hyp]hyp:F(A3) Let ŷtn,x,atn+1
= F̂n(x, a) be a consistant scheme s.t. F̂n(·, a) is bijective for small ∆t.

Lagrangian scheme Let (µn)n∈J0,N−1K ⊂ P1(Rd) be densities, and define
V̂ N := J ∨ g, V̂ n(x) := V̂ n+1

(
ŷtn,x,â

n

tn+1

)∨
g (x)

where ân ∈ argmin
a∈Ân

Θ

∫
x∈Rd

[
V̂ n+1

(
ŷtn,x,atn+1

) ∨
g (x)

]
dµn(x).

(1a)

(1b)

Remark – Storage The approximations V̂ n are just notations (only (ân)n∈J0,N−1K is stored).
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Θ ⊂ Mes

(
Rd, A

)
be approximation spaces.

hyp]hyp:F(A3) Let ŷtn,x,atn+1
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Formulation Scheme and result Illustrations

Variants

• Storing V̂ n: more memory, possible loss of precision, theoritical reduction of computation.

• Introduction of a substep approximation of maxs∈[tn,tn+1] g(y
t,x,a
s ) (keeping a fixed):

Figure: Without substeps Figure: With substeps
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Formulation Scheme and result Illustrations

Main result

hyp]hyp:concy

(A4)

Assume that
• F̂n(x, ·) is continuous for small enough ∆t, and

∣∣∣F̂n(x, a)
∣∣∣ ⩽ |x|+C∆t(1+ |x|).

• The approximation spaces satisfy limΘ→∞ Ân
Θ = Lip

(
Rd, A

)
in L1

µn .

• The densities µn = ρnL are such that F̂ ( supp ρn) ⊂ supp ρn+1, and

Cn,∆t := sup
x∈Rd

sup
a∈A

ρn(x)

ρn+1 ◦ F̂ (x, a)
< ∞.

Convergence ([BPW22]) Under (A1) to (A4), lim
Θ→∞

max
n∈J0,NK

∫
|V̂ n − V n|dµn = 0.

Averil Prost Minimalist analysis 11 / 18
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Formulation Scheme and result Illustrations

Comments

• Statement in [BPW22] is a parametric result with explicit formula, where the
approximation errors ηk may be chosen (at the expense of large Θn).

• If analytical controls are Lipschitz and ρn are the uniform densities, result for arbitrary N .

In the literature, this type of results is found in the neural network community. In particular,
• [HPBL21] and [BHLP22] analyze a similar problem in the context of stochastic

optimization. The presented scheme is inspired from the performance iteration scheme of
the authors, where the error analysis relies on diffusion, and related to the work of [BD07].

• A similar error analysis is performed in [GPW20, GPW21], using GroupSort networks.

• Global regression is studied (for instance) in [SS18] (DGM), or [HL20] for BSDEs.

Averil Prost Minimalist analysis 12 / 18
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Formulation Scheme and result Illustrations

Definition

Neural network Let L be a number of layers, and (dk)k∈J0,LK be natural numbers. A
map R : Rd0 → RdL is a feedforward neural network if it is of the form

R = σL ◦ LL ◦ · · · ◦ σ1 ◦ L1, σi : Rdi → Rdi nonlinear, Li : Rdi−1 → Rdi linear.

In the sequel, d1 = · · · = dL−1, d0 = d is the space dimension, and dL = κ.
• Various activations (ReLU max . (0, x), sigmoid (1 + e−x

. )−1, GroupSort sort↓(x))...
• Density in the space of continuous functions under mild assumptions (Lemma 16.1 of

[GKKW02]).
• In practice, approximation very sensitive to the correct structure of the network.
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Formulation Scheme and result Illustrations

Eikonal equation (1/2)

We consider T = 2 and the obstacle-free Eikonal equation

−∂tV (t, x) + max
a∈B(0,1)

⟨∇V (t, x), a⟩ = 0, with V (T, x) = min (|x+ e1| , |x− e1|) .
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Formulation Scheme and result Illustrations

Eikonal equation (2/2)

Dim d S.G it. Global L∞ Global L1 rel. Local L∞ Local L1 rel. Time
6 100000 2.16e-02 1.96e-03 4.06e-04 1.58e-04 1h26
7 200000 5.00e-02 3.41e-03 1.51e-02 1.26e-04 3h55
8 400000 1.99e-01 1.81e-02 4.39e-04 2.19e-04 10h31

Table: Errors for the Eikonal equation, N = 4 iterations, 3 layers, 40 neurons
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Formulation Scheme and result Illustrations

The door problem (1/2)

We consider the Eikonal-advection equation with |b| > c > 0:

min
(
− ∂tV + ⟨∇V, b⟩+ max

a∈B(0,1)
⟨∇V, ca⟩ , V − g

)
= 0, V (T, ·) = max (g, |·| − 1) .
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The door problem (2/2)

dim d = 2 dim d = 6 dim d = 8
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Thank you!
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