Minimalist analysis

A Lagrangian scheme for first-order HJB equations using neural networks

Averil Prost

Joint work with Olivier Bokanowski \& Xavier Warin

May 22, 2023
SMAI 2023

Table of Contents

Control problem with state constraints

A generic Lagrangian scheme

Numerical illustration on neural networks

Setting of the problem

Let $T>0$. We consider the solution $V=V(t, x)$ of

$$
\min \left(-\partial_{t} V+\max _{a \in A}\langle\nabla V, f(x, a)\rangle, V-g(x)\right)=0, \quad V(T, x)=\max (\mathfrak{J}(x), g(x))
$$

Setting of the problem

Let $T>0$. We consider the solution $V=V(t, x)$ of

$$
\begin{equation*}
\min \left(-\partial_{t} V+\max _{a \in A}\langle\nabla V, f(x, a)\rangle, V-g(x)\right)=0, \quad V(T, x)=\max (\mathfrak{J}(x), g(x)) \tag{HJ}
\end{equation*}
$$

Notations and running assumptions Here

- $A \subset \mathbb{R}^{\kappa}$ is a compact set, and $\mathbb{A}_{[t, T]}$ the set of measurable $a(\cdot):[t, T] \rightarrow A$,
(A1)
- $f: \mathbb{R}^{d} \times A \rightarrow T \mathbb{R}^{d}$ is a Lipschitz dynamic such that $f(x, A)$ is convex $\forall x \in \mathbb{R}^{d}$,
- The obstacle function $g: \mathbb{R}^{d} \rightarrow \mathbb{R}$ and terminal cost $\mathfrak{J}: \mathbb{R}^{d} \rightarrow \mathbb{R}$ are Lipschitz.

Setting of the problem

Let $T>0$. We consider the solution $V=V(t, x)$ of

$$
\begin{equation*}
\min \left(-\partial_{t} V+\max _{a \in A}\langle\nabla V, f(x, a)\rangle, V-g(x)\right)=0, \quad V(T, x)=\max (\mathfrak{J}(x), g(x)) \tag{HJ}
\end{equation*}
$$

Notations and running assumptions Here

- $A \subset \mathbb{R}^{\kappa}$ is a compact set, and $\mathbb{A}_{[t, T]}$ the set of measurable $a(\cdot):[t, T] \rightarrow A$,
(A1)
- $f: \mathbb{R}^{d} \times A \rightarrow T \mathbb{R}^{d}$ is a Lipschitz dynamic such that $f(x, A)$ is convex $\forall x \in \mathbb{R}^{d}$,
- The obstacle function $g: \mathbb{R}^{d} \rightarrow \mathbb{R}$ and terminal cost $\mathfrak{J}: \mathbb{R}^{d} \rightarrow \mathbb{R}$ are Lipschitz.

Well-posedness ([ABZ13]) There exists an unique continuous viscosity solution of (HJ).

Origin of the problem $(1 / 3)$

Let $f_{0}: \mathbb{R}^{d-1} \times A \rightarrow T \mathbb{R}^{d-1}$, choose an "admissible" closed set $K \subset \mathbb{R}^{d-1}$ and denote $\mathbb{B}_{\xi,[t, T]}:=\left\{a(\cdot) \in \mathbb{A}_{[t, T]} \mid \gamma_{s}^{t, \xi, a} \in K \quad \forall s \in[t, T], \dot{\gamma}_{s}^{t, \xi, a}=f_{0}\left(\gamma_{s}^{t, \xi, a}, a(s)\right), \gamma_{t}^{t, \xi, a}=\xi\right\}$.

Origin of the problem $(1 / 3)$

Let $f_{0}: \mathbb{R}^{d-1} \times A \rightarrow T \mathbb{R}^{d-1}$, choose an "admissible" closed set $K \subset \mathbb{R}^{d-1}$ and denote

$$
\mathbb{B}_{\xi,[t, T]}:=\left\{a(\cdot) \in \mathbb{A}_{[t, T]} \mid \gamma_{s}^{t, \xi, a} \in K \quad \forall s \in[t, T], \dot{\gamma}_{s}^{t, \xi, a}=f_{0}\left(\gamma_{s}^{t, \xi, a}, a(s)\right), \gamma_{t}^{t, \xi, a}=\xi\right\}
$$

State-constrained control problem Let $L, J: \mathbb{R}^{d-1} \rightarrow \mathbb{R}$ be Lipschitz, and
Find $a^{*} \in \mathbb{B}_{[t, T]}$ that minimizes $a \mapsto \int_{s=t}^{T} L\left(\gamma_{s}^{t, \xi, a}\right) d s+J\left(\gamma_{T}^{t, \xi, a}\right)$ over all $a(\cdot) \in \mathbb{B}_{[t, T]}$.

Origin of the problem $(1 / 3)$

Let $f_{0}: \mathbb{R}^{d-1} \times A \rightarrow T \mathbb{R}^{d-1}$, choose an "admissible" closed set $K \subset \mathbb{R}^{d-1}$ and denote

$$
\mathbb{B}_{\xi,[t, T]}:=\left\{a(\cdot) \in \mathbb{A}_{[t, T]} \mid \gamma_{s}^{t, \xi, a} \in K \quad \forall s \in[t, T], \dot{\gamma}_{s}^{t, \xi, a}=f_{0}\left(\gamma_{s}^{t, \xi, a}, a(s)\right), \gamma_{t}^{t, \xi, a}=\xi\right\}
$$

State-constrained control problem Let $L, J: \mathbb{R}^{d-1} \rightarrow \mathbb{R}$ be Lipschitz, and
Find $a^{*} \in \mathbb{B}_{[t, T]}$ that minimizes $a \mapsto \int_{s=t}^{T} L\left(\gamma_{s}^{t, \xi, a}\right) d s+J\left(\gamma_{T}^{t, \xi, a}\right)$ over all $a(\cdot) \in \mathbb{B}_{[t, T]}$.

Introduce the corresponding value function

$$
u(t, \xi):=\inf \left\{\int_{s=t}^{T} L\left(\gamma_{s}^{t, \xi, a}\right) d s+J\left(\gamma_{T}^{t, \xi, a}\right) \mid a(\cdot) \in \mathbb{B}_{[t, T]}\right\}
$$

Origin of the problem (2/3)

(A2) Assume $K=\left\{g_{0} \leqslant 0\right\}$, where $g_{0}: \mathbb{R}^{d-1} \rightarrow \mathbb{R}$ is Lipschitz.

Origin of the problem ($2 / 3$)

(A2) Assume $K=\left\{g_{0} \leqslant 0\right\}$, where $g_{0}: \mathbb{R}^{d-1} \rightarrow \mathbb{R}$ is Lipschitz.
Let then

$$
x=(\xi, z), \quad f(x, a):=\left(f_{0}(\xi, a), L(\xi)\right), \quad g(x)=g_{0}(\xi), \quad \mathfrak{J}(x)=J(\xi)-z .
$$

Origin of the problem (2/3)

(A2) Assume $K=\left\{g_{0} \leqslant 0\right\}$, where $g_{0}: \mathbb{R}^{d-1} \rightarrow \mathbb{R}$ is Lipschitz.
Let then

$$
x=(\xi, z), \quad f(x, a):=\left(f_{0}(\xi, a), L(\xi)\right), \quad g(x)=g_{0}(\xi), \quad \mathfrak{J}(x)=J(\xi)-z
$$

Let again $y .{ }^{t, x, a}$ solve $\dot{y}_{s}=f\left(y_{x}, a(s)\right)$. Introduce the auxilliary map

$$
V(t, x):=\inf \left\{\max \left(\mathfrak{J}\left(y_{T}^{t, x, a}\right), \max _{s \in[t, T]} g\left(y_{s}^{t, x, a}\right)\right) \mid a(\cdot) \in \mathbb{A}_{[t, T]}\right\}
$$

Origin of the problem (2/3)

(A2) Assume $K=\left\{g_{0} \leqslant 0\right\}$, where $g_{0}: \mathbb{R}^{d-1} \rightarrow \mathbb{R}$ is Lipschitz.
Let then

$$
x=(\xi, z), \quad f(x, a):=\left(f_{0}(\xi, a), L(\xi)\right), \quad g(x)=g_{0}(\xi), \quad \mathfrak{J}(x)=J(\xi)-z .
$$

Let again $y .{ }^{t, x, a}$ solve $\dot{y}_{s}=f\left(y_{x}, a(s)\right)$. Introduce the auxilliary map

$$
V(t, x):=\inf \left\{\max \left(\mathfrak{J}\left(y_{T}^{t, x, a}\right), \max _{s \in[t, T]} g\left(y_{s}^{t, x, a}\right)\right) \mid a(\cdot) \in \mathbb{A}_{[t, T]}\right\}
$$

Link between both ([ABZ13]) The auxilliary map V solves (HJ), and there holds

$$
u(t, \xi)=\inf \{z \in \mathbb{R} \mid V(t,(\xi, z)) \leqslant 0\} \quad \text { (with the convention } \inf (\emptyset)=+\infty .)
$$

Origin of the problem (3/3)

$$
\begin{aligned}
& \text { Example We want to minimize } \xi \mapsto\left|\gamma_{T}^{t, \xi, a}\right| \text {, where } \dot{\gamma}_{s}^{t, \xi, a}=a(s) \text { and }|\gamma| \geqslant 1 \text {. Let } \\
& A=[-1,1], f_{0}(\xi, a):=a, L=0, J(\xi)=|\xi| \text { and } g_{0}(\xi)=1-|\xi| \text {. }
\end{aligned}
$$

Origin of the problem ($3 / 3$)

Example We want to minimize $\xi \mapsto\left|\gamma_{T}^{t, \xi, a}\right|$, where $\dot{\gamma}_{s}^{t, \xi, a}=a(s)$ and $|\gamma| \geqslant 1$. Let $A=[-1,1], f_{0}(\xi, a):=a, L=0, J(\xi)=|\xi|$ and $g_{0}(\xi)=1-|\xi|$. The auxilliary problem reads

$$
V(t, x)=\inf _{a \in \mathbb{A}_{[t, T]}}\left\{\left|y_{T}^{t, x, a}\right| \bigvee_{s \in[t, T]}\left(1-\left|y_{s}^{t, x, a}\right|\right)\right\}, \quad\left\{\begin{array}{l}
\left(-\partial_{t} V+\left|\partial_{x_{1}} V\right|\right) \wedge(V-g)=0 \\
V(T, x)=\left(\left|x_{1}\right|-x_{2}\right) \vee\left(1-\left|x_{1}\right|\right)
\end{array}\right.
$$

Origin of the problem $(3 / 3)$

Example We want to minimize $\xi \mapsto\left|\gamma_{T}^{t, \xi, a}\right|$, where $\dot{\gamma}_{s}^{t, \xi, a}=a(s)$ and $|\gamma| \geqslant 1$. Let $A=[-1,1], f_{0}(\xi, a):=a, L=0, J(\xi)=|\xi|$ and $g_{0}(\xi)=1-|\xi|$. The auxilliary problem reads

$$
V(t, x)=\inf _{a \in \mathbb{A}_{[t, T]}}\left\{\left|y_{T}^{t, x, a}\right| \bigvee \max _{s \in[t, T]}\left(1-\left|y_{s}^{t, x, a}\right|\right)\right\}, \quad\left\{\begin{array}{l}
\left(-\partial_{t} V+\left|\partial_{x_{1}} V\right|\right) \wedge(V-g)=0 \\
V(T, x)=\left(\left|x_{1}\right|-x_{2}\right) \vee\left(1-\left|x_{1}\right|\right)
\end{array}\right.
$$

Solution V at time $t=T=1.00$

Origin of the problem (3/3)

Example We want to minimize $\xi \mapsto\left|\gamma_{T}^{t, \xi, a}\right|$, where $\dot{\gamma}_{s}^{t, \xi, a}=a(s)$ and $|\gamma| \geqslant 1$. Let $A=[-1,1], f_{0}(\xi, a):=a, L=0, J(\xi)=|\xi|$ and $g_{0}(\xi)=1-|\xi|$. The auxilliary problem reads

$$
V(t, x)=\inf _{a \in \mathbb{A}_{[t, T]}}\left\{\left|y_{T}^{t, x, a}\right| \bigvee \max _{s \in[t, T]}\left(1-\left|y_{s}^{t, x, a}\right|\right)\right\}, \quad\left\{\begin{array}{l}
\left(-\partial_{t} V+\left|\partial_{x_{1}} V\right|\right) \wedge(V-g)=0 \\
V(T, x)=\left(\left|x_{1}\right|-x_{2}\right) \vee\left(1-\left|x_{1}\right|\right)
\end{array}\right.
$$

Solution V at time $t=T=1.00$

Solution V at time $t=0.00$

Origin of the problem (3/3)

Example We want to minimize $\xi \mapsto\left|\gamma_{T}^{t, \xi, a}\right|$, where $\dot{\gamma}_{s}^{t, \xi, a}=a(s)$ and $|\gamma| \geqslant 1$. Let $A=[-1,1], f_{0}(\xi, a):=a, L=0, J(\xi)=|\xi|$ and $g_{0}(\xi)=1-|\xi|$. The auxilliary problem reads

$$
V(t, x)=\inf _{a \in \mathbb{A}_{[t, T]}}\left\{\left|y_{T}^{t, x, a}\right| \bigvee \max _{s \in[t, T]}\left(1-\left|y_{s}^{t, x, a}\right|\right)\right\}, \quad\left\{\begin{array}{l}
\left(-\partial_{t} V+\left|\partial_{x_{1}} V\right|\right) \wedge(V-g)=0 \\
V(T, x)=\left(\left|x_{1}\right|-x_{2}\right) \vee\left(1-\left|x_{1}\right|\right)
\end{array}\right.
$$

Solution V at time $t=T=1.00$

Solution V at time $t=0.00$

Evolution of u for $T=1.00$

Dynamical formulation ([ABZ13])

Dynamic programming principle For all $(t, x) \in[0, T] \times \mathbb{R}^{d}$ and $h \in[0, T-t]$,

$$
\begin{equation*}
V(t, x)=\inf \left\{V\left(t+h, y_{t+h}^{t, x, a}\right) \bigvee \max _{s \in[t, t+h]} g\left(y_{s}^{t, x, a}\right) \mid a(\cdot) \in \mathbb{A}_{[t, t+h]}\right\} . \tag{DPP}
\end{equation*}
$$

Dynamical formulation ([ABZ13])

Dynamic programming principle For all $(t, x) \in[0, T] \times \mathbb{R}^{d}$ and $h \in[0, T-t]$,

$$
\begin{equation*}
V(t, x)=\inf \left\{V\left(t+h, y_{t+h}^{t, x, a}\right) \bigvee \max _{s \in[t, t+h]} g\left(y_{s}^{t, x, a}\right) \mid a(\cdot) \in \mathbb{A}_{[t, t+h]}\right\} . \tag{DPP}
\end{equation*}
$$

Let $N \in \mathbb{N}, \Delta t=T / N$ and $t_{n}=n \Delta t$. Introduce a first discretization of (DPP) by

$$
V^{n}(x):=\inf \left\{V^{n+1}\left(F_{\Delta t}^{a}(x)\right) \bigvee G_{\Delta t}^{a}(x) \mid a \in \operatorname{Mes}\left(\mathbb{R}^{d}, A\right)\right\}, \quad V^{N}(x)=\mathfrak{J}(x) \vee g(x)
$$

where $F_{\Delta t}^{a}(x)$ is a consistant approximation of $y_{t+\Delta t}^{t, x, a}$, and $G_{\Delta t}^{a}(x)$ approximates $\max _{s \in[t, T]} g\left(y_{s}^{t, x, a}\right)$.

Dynamical formulation ([ABZ13])

Dynamic programming principle For all $(t, x) \in[0, T] \times \mathbb{R}^{d}$ and $h \in[0, T-t]$,

$$
\begin{equation*}
V(t, x)=\inf \left\{V\left(t+h, y_{t+h}^{t, x, a}\right) \bigvee_{s \in[t, t+h]} g\left(y_{s}^{t, x, a}\right) \mid a(\cdot) \in \mathbb{A}_{[t, t+h]}\right\} \tag{DPP}
\end{equation*}
$$

Let $N \in \mathbb{N}, \Delta t=T / N$ and $t_{n}=n \Delta t$. Introduce a first discretization of (DPP) by

$$
V^{n}(x):=\inf \left\{V^{n+1}\left(F_{\Delta t}^{a}(x)\right) \bigvee G_{\Delta t}^{a}(x) \mid a \in \operatorname{Mes}\left(\mathbb{R}^{d}, A\right)\right\}, \quad V^{N}(x)=\mathfrak{J}(x) \vee g(x)
$$

where $F_{\Delta t}^{a}(x)$ is a consistant approximation of $y_{t+\Delta t}^{t, x, a}$, and $G_{\Delta t}^{a}(x)$ approximates $\max _{s \in[t, T]} g\left(y_{s}^{t, x, a}\right)$.
Under natural assumptions, $V^{n}(x) \rightarrow V\left(t_{n}, x\right)$ locally uniformly when $\Delta t \rightarrow 0$.

Table of Contents

Control problem with state constraints

A generic Lagrangian scheme

Numerical illustration on neural networks

Expression

Let $\left(t_{n}\right)_{n \in \llbracket 0, N \rrbracket}$ be a discretization of $[0, T]$, and $\hat{\mathcal{A}}_{\Theta}^{n} \subset \operatorname{Mes}\left(\mathbb{R}^{d}, A\right)$ be approximation spaces.
(A3) Let $\hat{y}_{t_{n+1}}^{t_{n}, x, a}=\hat{F}_{n}(x, a)$ be a consistant scheme s.t. $\hat{F}_{n}(\cdot, a)$ is bijective for small Δt.

Expression

Let $\left(t_{n}\right)_{n \in \llbracket 0, N \rrbracket}$ be a discretization of $[0, T]$, and $\hat{\mathcal{A}}_{\Theta}^{n} \subset \operatorname{Mes}\left(\mathbb{R}^{d}, A\right)$ be approximation spaces.
(A3) Let $\hat{y}_{t_{n+1}}^{t_{n}, x, a}=\hat{F}_{n}(x, a)$ be a consistant scheme s.t. $\hat{F}_{n}(\cdot, a)$ is bijective for small Δt.

Lagrangian scheme Let $\left(\mu^{n}\right)_{n \in \llbracket 0, N-1 \rrbracket} \subset \mathscr{P}_{1}\left(\mathbb{R}^{d}\right)$ be densities, and define

$$
\left\{\begin{array}{l}
\hat{V}^{N}:=\mathfrak{J} \vee g, \quad \hat{V}^{n}(x):=\hat{V}^{n+1}\left(\hat{y}_{t_{n+1}}^{t_{n}, x, \hat{a}^{n}}\right) \bigvee g(x) \tag{1a}\\
\text { where } \quad \hat{a}^{n} \in \underset{a \in \hat{\mathcal{A}}_{\Theta}^{n}}{\operatorname{argmin}} \int_{x \in \mathbb{R}^{d}}\left[\hat{V}^{n+1}\left(\hat{y}_{t_{n+1}, x, a}^{t_{n}}\right) \bigvee g(x)\right] d \mu^{n}(x) .
\end{array}\right.
$$

Expression

Let $\left(t_{n}\right)_{n \in \llbracket 0, N \rrbracket}$ be a discretization of $[0, T]$, and $\hat{\mathcal{A}}_{\Theta}^{n} \subset \operatorname{Mes}\left(\mathbb{R}^{d}, A\right)$ be approximation spaces.
(A3) Let $\hat{y}_{t_{n+1}}^{t_{n}, x, a}=\hat{F}_{n}(x, a)$ be a consistant scheme s.t. $\hat{F}_{n}(\cdot, a)$ is bijective for small Δt.

Lagrangian scheme Let $\left(\mu^{n}\right)_{n \in \llbracket 0, N-1 \rrbracket} \subset \mathscr{P}_{1}\left(\mathbb{R}^{d}\right)$ be densities, and define

$$
\left\{\begin{array}{l}
\hat{V}^{N}:=\mathfrak{J} \vee g, \quad \hat{V}^{n}(x):=\hat{V}^{n+1}\left(\hat{y}_{t_{n+1}}^{t_{n}, x, \hat{a}^{n}}\right) \bigvee g(x) \tag{1a}\\
\text { where } \quad \hat{a}^{n} \in \underset{a \in \hat{\mathcal{A}}_{\Theta}^{n}}{\operatorname{argmin}} \int_{x \in \mathbb{R}^{d}}\left[\hat{V}^{n+1}\left(\hat{y}_{t_{n+1}, x, a}^{t_{n},}\right) \bigvee g(x)\right] d \mu^{n}(x) .
\end{array}\right.
$$

Remark - Storage The approximations \hat{V}^{n} are just notations (only $\left(\hat{a}^{n}\right)_{n \in \llbracket 0, N-1 \rrbracket}$ is stored).

Variants

- Storing \hat{V}^{n} : more memory, possible loss of precision, theoritical reduction of computation.

Variants

- Storing \hat{V}^{n} : more memory, possible loss of precision, theoritical reduction of computation.
- Introduction of a substep approximation of $\max _{s \in\left[t_{n}, t_{n+1}\right]} g\left(y_{s}^{t, x, a}\right)$ (keeping a fixed):

Figure: Without substeps

Figure: With substeps

Variants

- Storing \hat{V}^{n} : more memory, possible loss of precision, theoritical reduction of computation.
- Introduction of a substep approximation of $\max _{s \in\left[t_{n}, t_{n+1}\right]} g\left(y_{s}^{t, x, a}\right)$ (keeping a fixed):

Figure: Without substeps

Figure: With substeps

Variants

- Storing \hat{V}^{n} : more memory, possible loss of precision, theoritical reduction of computation.
- Introduction of a substep approximation of $\max _{s \in\left[t_{n}, t_{n+1}\right]} g\left(y_{s}^{t, x, a}\right)$ (keeping a fixed):

Figure: Without substeps

Figure: With substeps

Variants

- Storing \hat{V}^{n} : more memory, possible loss of precision, theoritical reduction of computation.
- Introduction of a substep approximation of $\max _{s \in\left[t_{n}, t_{n+1}\right]} g\left(y_{s}^{t, x, a}\right)$ (keeping a fixed):

Figure: Without substeps

Figure: With substeps

Variants

- Storing \hat{V}^{n} : more memory, possible loss of precision, theoritical reduction of computation.
- Introduction of a substep approximation of $\max _{s \in\left[t_{n}, t_{n+1}\right]} g\left(y_{s}^{t, x, a}\right)$ (keeping a fixed):

Figure: Without substeps

Figure: With substeps

Main result

Assume that

- $\hat{F}_{n}(x, \cdot)$ is continuous for small enough Δt, and $\left|\hat{F}_{n}(x, a)\right| \leqslant|x|+C \Delta t(1+|x|)$.
- The approximation spaces satisfy $\overline{\lim }_{\Theta \rightarrow \infty} \hat{\mathcal{A}}_{\Theta}^{n}=\operatorname{Lip}\left(\mathbb{R}^{d}, A\right)$ in $L_{\mu^{n}}^{1}$.
- The densities $\mu^{n}=\rho^{n} \mathcal{L}$ are such that $\hat{F}\left(\operatorname{supp} \rho^{n}\right) \subset \operatorname{supp} \rho^{n+1}$, and

$$
C_{n, \Delta t}:=\sup _{x \in \mathbb{R}^{d}} \sup _{a \in A} \frac{\rho^{n}(x)}{\rho^{n+1} \circ \hat{F}(x, a)}<\infty .
$$

Main result

Assume that

- $\hat{F}_{n}(x, \cdot)$ is continuous for small enough Δt, and $\left|\hat{F}_{n}(x, a)\right| \leqslant|x|+C \Delta t(1+|x|)$.
- The approximation spaces satisfy $\overline{\lim _{\Theta \rightarrow \infty} \hat{\mathcal{A}}_{\Theta}^{n}}=\operatorname{Lip}\left(\mathbb{R}^{d}, A\right)$ in $L_{\mu^{n}}^{1}$.
- The densities $\mu^{n}=\rho^{n} \mathcal{L}$ are such that $\hat{F}\left(\operatorname{supp} \rho^{n}\right) \subset \operatorname{supp} \rho^{n+1}$, and

$$
C_{n, \Delta t}:=\sup _{x \in \mathbb{R}^{d}} \sup _{a \in A} \frac{\rho^{n}(x)}{\rho^{n+1} \circ \hat{F}(x, a)}<\infty
$$

Convergence ([BPW22]) Under (A1) to (A4), $\lim _{\Theta \rightarrow \infty} \max _{n \in \llbracket 0, N \rrbracket} \int\left|\hat{V}^{n}-V^{n}\right| d \mu^{n}=0$.

Comments

- Statement in [BPW22] is a parametric result with explicit formula, where the approximation errors η_{k} may be chosen (at the expense of large Θ_{n}).

Comments

- Statement in [BPW22] is a parametric result with explicit formula, where the approximation errors η_{k} may be chosen (at the expense of large Θ_{n}).
- If analytical controls are Lipschitz and ρ^{n} are the uniform densities, result for arbitrary N.

Comments

- Statement in [BPW22] is a parametric result with explicit formula, where the approximation errors η_{k} may be chosen (at the expense of large Θ_{n}).
- If analytical controls are Lipschitz and ρ^{n} are the uniform densities, result for arbitrary N.

In the literature, this type of results is found in the neural network community. In particular,

- [HPBL21] and [BHLP22] analyze a similar problem in the context of stochastic optimization. The presented scheme is inspired from the performance iteration scheme of the authors, where the error analysis relies on diffusion, and related to the work of [BD07].

Comments

- Statement in [BPW22] is a parametric result with explicit formula, where the approximation errors η_{k} may be chosen (at the expense of large Θ_{n}).
- If analytical controls are Lipschitz and ρ^{n} are the uniform densities, result for arbitrary N.

In the literature, this type of results is found in the neural network community. In particular,

- [HPBL21] and [BHLP22] analyze a similar problem in the context of stochastic optimization. The presented scheme is inspired from the performance iteration scheme of the authors, where the error analysis relies on diffusion, and related to the work of [BD07].
- A similar error analysis is performed in [GPW20, GPW21], using GroupSort networks.

Comments

- Statement in [BPW22] is a parametric result with explicit formula, where the approximation errors η_{k} may be chosen (at the expense of large Θ_{n}).
- If analytical controls are Lipschitz and ρ^{n} are the uniform densities, result for arbitrary N.

In the literature, this type of results is found in the neural network community. In particular,

- [HPBL21] and [BHLP22] analyze a similar problem in the context of stochastic optimization. The presented scheme is inspired from the performance iteration scheme of the authors, where the error analysis relies on diffusion, and related to the work of [BD07].
- A similar error analysis is performed in [GPW20, GPW21], using GroupSort networks.
- Global regression is studied (for instance) in [SS18] (DGM), or [HL20] for BSDEs.

Table of Contents

Control problem with state constraints

A generic Lagrangian scheme

Numerical illustration on neural networks

Definition

Neural network Let L be a number of layers, and $\left(d_{k}\right)_{k \in \llbracket 0, L \rrbracket}$ be natural numbers. A map $\mathscr{R}: \mathbb{R}^{d_{0}} \rightarrow \mathbb{R}^{d_{L}}$ is a feedforward neural network if it is of the form

$$
\mathscr{R}=\sigma_{L} \circ \mathcal{L}_{L} \circ \cdots \circ \sigma_{1} \circ \mathcal{L}_{1}, \quad \sigma_{i}: \mathbb{R}^{d_{i}} \rightarrow \mathbb{R}^{d_{i}} \text { nonlinear, } \quad \mathcal{L}_{i}: \mathbb{R}^{d_{i-1}} \rightarrow \mathbb{R}^{d_{i}} \text { linear. }
$$

Definition

Neural network Let L be a number of layers, and $\left(d_{k}\right)_{k \in \llbracket 0, L \rrbracket}$ be natural numbers. A map $\mathscr{R}: \mathbb{R}^{d_{0}} \rightarrow \mathbb{R}^{d_{L}}$ is a feedforward neural network if it is of the form

$$
\mathscr{R}=\sigma_{L} \circ \mathcal{L}_{L} \circ \cdots \circ \sigma_{1} \circ \mathcal{L}_{1}, \quad \sigma_{i}: \mathbb{R}^{d_{i}} \rightarrow \mathbb{R}^{d_{i}} \text { nonlinear, } \quad \mathcal{L}_{i}: \mathbb{R}^{d_{i-1}} \rightarrow \mathbb{R}^{d_{i}} \text { linear. }
$$

In the sequel, $d_{1}=\cdots=d_{L-1}, d_{0}=d$ is the space dimension, and $d_{L}=\kappa$.

Definition

Neural network Let L be a number of layers, and $\left(d_{k}\right)_{k \in \llbracket 0, L \rrbracket}$ be natural numbers. A map $\mathscr{R}: \mathbb{R}^{d_{0}} \rightarrow \mathbb{R}^{d_{L}}$ is a feedforward neural network if it is of the form

$$
\mathscr{R}=\sigma_{L} \circ \mathcal{L}_{L} \circ \cdots \circ \sigma_{1} \circ \mathcal{L}_{1}, \quad \sigma_{i}: \mathbb{R}^{d_{i}} \rightarrow \mathbb{R}^{d_{i}} \text { nonlinear, } \quad \mathcal{L}_{i}: \mathbb{R}^{d_{i-1}} \rightarrow \mathbb{R}^{d_{i}} \text { linear. }
$$

In the sequel, $d_{1}=\cdots=d_{L-1}, d_{0}=d$ is the space dimension, and $d_{L}=\kappa$.

- Various activations (ReLU max. $(0, x)$, sigmoid $\left(1+e^{-x}\right)^{-1}$, $\left.\operatorname{GroupSort}^{\operatorname{sort}}{ }_{\downarrow}(x)\right) \ldots$

Definition

Neural network Let L be a number of layers, and $\left(d_{k}\right)_{k \in \llbracket 0, L \rrbracket}$ be natural numbers. A map $\mathscr{R}: \mathbb{R}^{d_{0}} \rightarrow \mathbb{R}^{d_{L}}$ is a feedforward neural network if it is of the form

$$
\mathscr{R}=\sigma_{L} \circ \mathcal{L}_{L} \circ \cdots \circ \sigma_{1} \circ \mathcal{L}_{1}, \quad \sigma_{i}: \mathbb{R}^{d_{i}} \rightarrow \mathbb{R}^{d_{i}} \text { nonlinear, } \quad \mathcal{L}_{i}: \mathbb{R}^{d_{i-1}} \rightarrow \mathbb{R}^{d_{i}} \text { linear. }
$$

In the sequel, $d_{1}=\cdots=d_{L-1}, d_{0}=d$ is the space dimension, and $d_{L}=\kappa$.

- Various activations (ReLU max. $(0, x)$, sigmoid $\left(1+e^{-x}\right)^{-1}$, $\left.\operatorname{GroupSort}^{\operatorname{sort}}{ }_{\downarrow}(x)\right) \ldots$
- Density in the space of continuous functions under mild assumptions (Lemma 16.1 of [GKKW02]).

Definition

Neural network Let L be a number of layers, and $\left(d_{k}\right)_{k \in \llbracket 0, L \rrbracket}$ be natural numbers. A map $\mathscr{R}: \mathbb{R}^{d_{0}} \rightarrow \mathbb{R}^{d_{L}}$ is a feedforward neural network if it is of the form

$$
\mathscr{R}=\sigma_{L} \circ \mathcal{L}_{L} \circ \cdots \circ \sigma_{1} \circ \mathcal{L}_{1}, \quad \sigma_{i}: \mathbb{R}^{d_{i}} \rightarrow \mathbb{R}^{d_{i}} \text { nonlinear, } \quad \mathcal{L}_{i}: \mathbb{R}^{d_{i-1}} \rightarrow \mathbb{R}^{d_{i}} \text { linear. }
$$

In the sequel, $d_{1}=\cdots=d_{L-1}, d_{0}=d$ is the space dimension, and $d_{L}=\kappa$.

- Various activations (ReLU max. $(0, x)$, sigmoid $\left(1+e^{-x}\right)^{-1}$, $\operatorname{GroupSort}^{\text {sort }} \downarrow \downarrow$ $\left.(x)\right) \ldots$
- Density in the space of continuous functions under mild assumptions (Lemma 16.1 of [GKKW02]).
- In practice, approximation very sensitive to the correct structure of the network.

Eikonal equation (1/2)

We consider $T=2$ and the obstacle-free Eikonal equation

$$
-\partial_{t} V(t, x)+\max _{a \in \overline{\mathscr{B}}(0,1)}\langle\nabla V(t, x), a\rangle=0, \quad \text { with } \quad V(T, x)=\min \left(\left|x+e_{1}\right|,\left|x-e_{1}\right|\right)
$$

Eikonal equation (1/2)

We consider $T=2$ and the obstacle-free Eikonal equation

$$
-\partial_{t} V(t, x)+\max _{a \in \overline{\mathscr{B}}(0,1)}\langle\nabla V(t, x), a\rangle=0, \quad \text { with } \quad V(T, x)=\min \left(\left|x+e_{1}\right|,\left|x-e_{1}\right|\right)
$$

Eikonal equation (1/2)

We consider $T=2$ and the obstacle-free Eikonal equation

$$
-\partial_{t} V(t, x)+\max _{a \in \overline{\mathscr{B}}(0,1)}\langle\nabla V(t, x), a\rangle=0, \quad \text { with } \quad V(T, x)=\min \left(\left|x+e_{1}\right|,\left|x-e_{1}\right|\right)
$$

Eikonal equation (1/2)

We consider $T=2$ and the obstacle-free Eikonal equation

$$
-\partial_{t} V(t, x)+\max _{a \in \overline{\mathscr{B}}(0,1)}\langle\nabla V(t, x), a\rangle=0, \quad \text { with } \quad V(T, x)=\min \left(\left|x+e_{1}\right|,\left|x-e_{1}\right|\right) .
$$

Eikonal equation (1/2)

We consider $T=2$ and the obstacle-free Eikonal equation

$$
-\partial_{t} V(t, x)+\max _{a \in \overline{\mathscr{B}}(0,1)}\langle\nabla V(t, x), a\rangle=0, \quad \text { with } \quad V(T, x)=\min \left(\left|x+e_{1}\right|,\left|x-e_{1}\right|\right) .
$$

Eikonal equation (2/2)

$\operatorname{Dim} d$	S.G it.	Global L_{∞}	Global L_{1} rel.	Local L_{∞}	Local L_{1} rel.	Time
6	100000	$2.16 \mathrm{e}-02$	$1.96 \mathrm{e}-03$	$4.06 \mathrm{e}-04$	$1.58 \mathrm{e}-04$	1 h 26
7	200000	$5.00 \mathrm{e}-02$	$3.41 \mathrm{e}-03$	$1.51 \mathrm{e}-02$	$1.26 \mathrm{e}-04$	3 h 55
8	400000	$1.99 \mathrm{e}-01$	$1.81 \mathrm{e}-02$	$4.39 \mathrm{e}-04$	$2.19 \mathrm{e}-04$	10 h 31

Table: Errors for the Eikonal equation, $N=4$ iterations, 3 layers, 40 neurons

Eikonal equation (2/2)

$\operatorname{Dim} d$	S.G it.	Global L_{∞}	Global L_{1} rel.	Local L_{∞}	Local L_{1} rel.	Time
6	100000	$2.16 \mathrm{e}-02$	$1.96 \mathrm{e}-03$	$4.06 \mathrm{e}-04$	$1.58 \mathrm{e}-04$	1 h 26
7	200000	$5.00 \mathrm{e}-02$	$3.41 \mathrm{e}-03$	$1.51 \mathrm{e}-02$	$1.26 \mathrm{e}-04$	3 h 55
8	400000	$1.99 \mathrm{e}-01$	$1.81 \mathrm{e}-02$	$4.39 \mathrm{e}-04$	$2.19 \mathrm{e}-04$	10 h 31

Table: Errors for the Eikonal equation, $N=4$ iterations, 3 layers, 40 neurons

Eikonal equation (2/2)

$\operatorname{Dim} d$	S.G it.	Global L_{∞}	Global L_{1} rel.	Local L_{∞}	Local L_{1} rel.	Time
6	100000	$2.16 \mathrm{e}-02$	$1.96 \mathrm{e}-03$	$4.06 \mathrm{e}-04$	$1.58 \mathrm{e}-04$	1 h 26
7	200000	$5.00 \mathrm{e}-02$	$3.41 \mathrm{e}-03$	$1.51 \mathrm{e}-02$	$1.26 \mathrm{e}-04$	3 h 55
8	400000	$1.99 \mathrm{e}-01$	$1.81 \mathrm{e}-02$	$4.39 \mathrm{e}-04$	$2.19 \mathrm{e}-04$	10 h 31

Table: Errors for the Eikonal equation, $N=4$ iterations, 3 layers, 40 neurons

Error, dim=7 ($t=1.00$)

Error, dim=8 ($t=1.00$)

Eikonal equation (2/2)

$\operatorname{Dim} d$	S.G it.	Global L_{∞}	Global L_{1} rel.	Local L_{∞}	Local L_{1} rel.	Time
6	100000	$2.16 \mathrm{e}-02$	$1.96 \mathrm{e}-03$	$4.06 \mathrm{e}-04$	$1.58 \mathrm{e}-04$	1 h 26
7	200000	$5.00 \mathrm{e}-02$	$3.41 \mathrm{e}-03$	$1.51 \mathrm{e}-02$	$1.26 \mathrm{e}-04$	3 h 55
8	400000	$1.99 \mathrm{e}-01$	$1.81 \mathrm{e}-02$	$4.39 \mathrm{e}-04$	$2.19 \mathrm{e}-04$	10 h 31

Table: Errors for the Eikonal equation, $N=4$ iterations, 3 layers, 40 neurons

Eikonal equation (2/2)

$\operatorname{Dim} d$	S.G it.	Global L_{∞}	Global L_{1} rel.	Local L_{∞}	Local L_{1} rel.	Time
6	100000	$2.16 \mathrm{e}-02$	$1.96 \mathrm{e}-03$	$4.06 \mathrm{e}-04$	$1.58 \mathrm{e}-04$	1 h 26
7	200000	$5.00 \mathrm{e}-02$	$3.41 \mathrm{e}-03$	$1.51 \mathrm{e}-02$	$1.26 \mathrm{e}-04$	3 h 55
8	400000	$1.99 \mathrm{e}-01$	$1.81 \mathrm{e}-02$	$4.39 \mathrm{e}-04$	$2.19 \mathrm{e}-04$	10 h 31

Table: Errors for the Eikonal equation, $N=4$ iterations, 3 layers, 40 neurons

The door problem (1/2)

We consider the Eikonal-advection equation with $|b|>c>0$:

$$
\min \left(-\partial_{t} V+\langle\nabla V, b\rangle+\max _{a \in \overline{\mathscr{B}}(0,1)}\langle\nabla V, c a\rangle, V-g\right)=0, \quad V(T, \cdot)=\max (g,|\cdot|-1)
$$

The door problem (1/2)

We consider the Eikonal-advection equation with $|b|>c>0$:

$$
\min \left(-\partial_{t} V+\langle\nabla V, b\rangle+\max _{a \in \overline{\mathscr{B}}(0,1)}\langle\nabla V, c a\rangle, V-g\right)=0, \quad V(T, \cdot)=\max (g,|\cdot|-1)
$$

The door problem (1/2)

We consider the Eikonal-advection equation with $|b|>c>0$:

$$
\min \left(-\partial_{t} V+\langle\nabla V, b\rangle+\max _{a \in \overline{\mathscr{B}}(0,1)}\langle\nabla V, c a\rangle, V-g\right)=0, \quad V(T, \cdot)=\max (g,|\cdot|-1)
$$

The door problem (1/2)

We consider the Eikonal-advection equation with $|b|>c>0$:

$$
\min \left(-\partial_{t} V+\langle\nabla V, b\rangle+\max _{a \in \overline{\mathscr{B}}(0,1)}\langle\nabla V, c a\rangle, V-g\right)=0, \quad V(T, \cdot)=\max (g,|\cdot|-1)
$$

The door problem (1/2)

We consider the Eikonal-advection equation with $|b|>c>0$:

$$
\min \left(-\partial_{t} V+\langle\nabla V, b\rangle+\max _{a \in \overline{\mathscr{B}}(0,1)}\langle\nabla V, c a\rangle, V-g\right)=0, \quad V(T, \cdot)=\max (g,|\cdot|-1)
$$

The door problem (2/2)

The door problem (2/2)

Thank you!

[ABZ13] Albert Altarovici, Olivier Bokanowski, and Hasnaa Zidani.
A general Hamilton-Jacobi framework for non-linear state-constrained control problems.
ESAIM: Control, Optimisation and Calculus of Variations, 19(2):337-357, April 2013.
[BD07] Christian Bender and Robert Denk. A forward scheme for backward SDEs.
Stochastic Processes and their Applications, 117(12):1793-1812, December 2007.
[BHLP22] Achref Bachouch, Côme Huré, Nicolas Langrené, and Huyen Pham.
Deep neural networks algorithms for stochastic control problems on finite horizon: Numerical applications.
Methodology and Computing in Applied Probability, 24(1):143-178, March 2022.
[BPW22] Olivier Bokanowski, Averil Prost, and Xavier Warin.
Neural networks for first order HJB equations and application to front propagation with obstacle terms, October 2022.
[GKKW02] László Györfi, Michael Kohler, Adam Krzyżak, and Harro Walk.
A Distribution-Free Theory of Nonparametric Regression. Springer Series in Statistics. Springer New York, New York, NY, 2002.
[GPW20] Maximilien Germain, Huyen Pham, and Xavier Warin.
Deep backward multistep schemes for nonlinear PDEs and approximation error analysis.
2020.
[GPW21] Maximilien Germain, Huyen Pham, and Xavier Warin.
Approximation error analysis of some deep backward schemes for nonlinear PDEs, September 2021.
[HL20] Jiequn Han and Jihao Long.
Convergence of the deep BSDE method for coupled FBSDEs. Probability, Uncertainty and Quantitative Risk, 5(1):5, July 2020.
[HPBL21] Côme Huré, Huyên Pham, Achref Bachouch, and Nicolas Langrené.
Deep neural networks algorithms for stochastic control problems on finite horizon:
Convergence analysis.

$$
\text { SIAM Journal on Numerical Analysis, 59(1):525-557, January } 2021 .
$$

[SS18] Justin Sirignano and Konstantinos Spiliopoulos.
DGM: A deep learning algorithm for solving partial differential equations. Journal of Computational Physics, 375:1339-1364, December 2018.

