Minimalist analysis

A Lagrangian scheme for first-order HJB equations using neural networks

Table of Contents

Control problem with state constraints

A generic Lagrangian scheme

Numerical illustration on neural networks

Setting of the problem

Let T > 0. We consider the solution V = V(t, x) of

$$\min\left(-\partial_t V + \max_{a \in A} \left\langle \nabla V, f(x, a) \right\rangle, V - g(x)\right) = 0, \qquad V(T, x) = \max\left(\mathfrak{J}(x), g(x)\right). \quad (\mathsf{HJ})$$

Setting of the problem

Let T > 0. We consider the solution V = V(t, x) of

$$\min\left(-\partial_t V + \max_{a \in A} \left\langle \nabla V, f(x, a) \right\rangle, V - g(x)\right) = 0, \qquad V(T, x) = \max\left(\mathfrak{J}(x), g(x)\right). \quad (\mathsf{HJ})$$

Notations and running assumptions Here

(A1)

- $A \subset \mathbb{R}^{\kappa}$ is a compact set, and $\mathbb{A}_{[t,T]}$ the set of measurable $a(\cdot) : [t,T] \to A$,
- $f: \mathbb{R}^d \times A \to T\mathbb{R}^d$ is a Lipschitz dynamic such that f(x, A) is convex $\forall x \in \mathbb{R}^d$,
- The obstacle function $g: \mathbb{R}^d \to \mathbb{R}$ and terminal cost $\mathfrak{J}: \mathbb{R}^d \to \mathbb{R}$ are Lipschitz.

Setting of the problem

Let T > 0. We consider the solution V = V(t, x) of

$$\min\left(-\partial_t V + \max_{a \in A} \left\langle \nabla V, f(x, a) \right\rangle, V - g(x)\right) = 0, \qquad V(T, x) = \max\left(\mathfrak{J}(x), g(x)\right). \quad (\mathsf{HJ})$$

Notations and running assumptions Here

(A1)

- $A \subset \mathbb{R}^{\kappa}$ is a compact set, and $\mathbb{A}_{[t,T]}$ the set of measurable $a(\cdot):[t,T] \to A$,
- $f: \mathbb{R}^d \times A \to T\mathbb{R}^d$ is a Lipschitz dynamic such that f(x, A) is convex $\forall x \in \mathbb{R}^d$,
- The obstacle function $g: \mathbb{R}^d \to \mathbb{R}$ and terminal cost $\mathfrak{J}: \mathbb{R}^d \to \mathbb{R}$ are Lipschitz.

Well-posedness ([ABZ13]) There exists an unique continuous viscosity solution of (HJ).

Let $f_0: \mathbb{R}^{d-1} \times A \to T\mathbb{R}^{d-1}$, choose an "admissible" closed set $K \subset \mathbb{R}^{d-1}$ and denote

$$\mathbb{B}_{\xi,[t,T]} \coloneqq \left\{ a(\cdot) \in \mathbb{A}_{[t,T]} \mid \gamma_s^{t,\xi,a} \in K \quad \forall s \in [t,T], \ \dot{\gamma}_s^{t,\xi,a} = f_0(\gamma_s^{t,\xi,a}, a(s)), \ \gamma_t^{t,\xi,a} = \xi \right\}.$$

Let $f_0: \mathbb{R}^{d-1} \times A \to T\mathbb{R}^{d-1}$, choose an "admissible" closed set $K \subset \mathbb{R}^{d-1}$ and denote

$$\mathbb{B}_{\xi,[t,T]} \coloneqq \left\{ a(\cdot) \in \mathbb{A}_{[t,T]} \mid \gamma_s^{t,\xi,a} \in K \quad \forall s \in [t,T], \ \dot{\gamma}_s^{t,\xi,a} = f_0(\gamma_s^{t,\xi,a}, a(s)), \ \gamma_t^{t,\xi,a} = \xi \right\}.$$

State-constrained control problem Let $L, J : \mathbb{R}^{d-1} \to \mathbb{R}$ be Lipschitz, and

Find $a^* \in \mathbb{B}_{[t,T]}$ that minimizes $a \mapsto \int_{s=t}^T L\left(\gamma_s^{t,\xi,a}\right) ds + J\left(\gamma_T^{t,\xi,a}\right)$ over all $a(\cdot) \in \mathbb{B}_{[t,T]}$.

Let $f_0: \mathbb{R}^{d-1} \times A \to T\mathbb{R}^{d-1}$, choose an "admissible" closed set $K \subset \mathbb{R}^{d-1}$ and denote

$$\mathbb{B}_{\xi,[t,T]} \coloneqq \left\{ a(\cdot) \in \mathbb{A}_{[t,T]} \mid \gamma_s^{t,\xi,a} \in K \quad \forall s \in [t,T], \ \dot{\gamma}_s^{t,\xi,a} = f_0(\gamma_s^{t,\xi,a}, a(s)), \ \gamma_t^{t,\xi,a} = \xi \right\}.$$

State-constrained control problem Let $L, J : \mathbb{R}^{d-1} \to \mathbb{R}$ be Lipschitz, and

Find
$$a^* \in \mathbb{B}_{[t,T]}$$
 that minimizes $a \mapsto \int_{s=t}^T L\left(\gamma_s^{t,\xi,a}\right) ds + J\left(\gamma_T^{t,\xi,a}\right)$ over all $a(\cdot) \in \mathbb{B}_{[t,T]}$.

Introduce the corresponding value function

$$u(t,\xi) \coloneqq \inf \left\{ \int_{s=t}^T L\left(\gamma_s^{t,\xi,a}\right) ds + J\left(\gamma_T^{t,\xi,a}\right) \ \bigg| \ a(\cdot) \in \mathbb{B}_{[t,T]} \right\}.$$

(A2) Assume $K = \{g_0 \leq 0\}$, where $g_0 : \mathbb{R}^{d-1} \to \mathbb{R}$ is Lipschitz.

(A2) Assume $K = \{g_0 \leq 0\}$, where $g_0 : \mathbb{R}^{d-1} \to \mathbb{R}$ is Lipschitz.

Let then

$$x = (\xi, z), \quad f(x, a) \coloneqq (f_0(\xi, a), L(\xi)), \quad g(x) = g_0(\xi), \quad \mathfrak{J}(x) = J(\xi) - z.$$

(A2) Assume $K = \{g_0 \leq 0\}$, where $g_0 : \mathbb{R}^{d-1} \to \mathbb{R}$ is Lipschitz.

Let then

$$x = (\xi, z), \quad f(x, a) \coloneqq (f_0(\xi, a), L(\xi)), \quad g(x) = g_0(\xi), \quad \mathfrak{J}(x) = J(\xi) - z.$$

Let again $y^{t,x,a}$ solve $\dot{y}_s = f(y_x, a(s))$. Introduce the auxilliary map

$$V(t,x) \coloneqq \inf \left\{ \max \left(\Im \left(y_T^{t,x,a} \right), \max_{s \in [t,T]} g \left(y_s^{t,x,a} \right) \right) \ \middle| \ a(\cdot) \in \mathbb{A}_{[t,T]} \right\}.$$

(A2) Assume $K = \{g_0 \leq 0\}$, where $g_0 : \mathbb{R}^{d-1} \to \mathbb{R}$ is Lipschitz.

Let then

$$x = (\xi, z), \quad f(x, a) \coloneqq (f_0(\xi, a), L(\xi)), \quad g(x) = g_0(\xi), \quad \mathfrak{J}(x) = J(\xi) - z.$$

Let again $y^{t,x,a}$ solve $\dot{y}_s = f(y_x, a(s))$. Introduce the auxilliary map

$$V(t,x) \coloneqq \inf \left\{ \max \left(\Im \left(y_T^{t,x,a} \right), \max_{s \in [t,T]} g \left(y_s^{t,x,a} \right) \right) \ \middle| \ a(\cdot) \in \mathbb{A}_{[t,T]} \right\}.$$

Link between both ([ABZ13]) The auxilliary map V solves (HJ), and there holds $u(t,\xi) = \inf \{z \in \mathbb{R} \mid V(t,(\xi,z)) \leq 0\} \qquad (\text{with the convention } \inf(\emptyset) = +\infty.)$

Example We want to minimize $\xi \mapsto |\gamma_T^{t,\xi,a}|$, where $\dot{\gamma}_s^{t,\xi,a} = a(s)$ and $|\gamma| \ge 1$. Let A = [-1,1], $f_0(\xi,a) \coloneqq a$, L = 0, $J(\xi) = |\xi|$ and $g_0(\xi) = 1 - |\xi|$.

Origin of the problem (3/3)

Example We want to minimize $\xi \mapsto |\gamma_T^{t,\xi,a}|$, where $\dot{\gamma}_s^{t,\xi,a} = a(s)$ and $|\gamma| \ge 1$. Let A = [-1,1], $f_0(\xi,a) \coloneqq a$, L = 0, $J(\xi) = |\xi|$ and $g_0(\xi) = 1 - |\xi|$. The auxilliary problem reads

$$V(t,x) = \inf_{a \in \mathbb{A}_{[t,T]}} \left\{ \left| y_T^{t,x,a} \right| \bigvee \max_{s \in [t,T]} \left(1 - \left| y_s^{t,x,a} \right| \right) \right\}, \quad \begin{cases} (-\partial_t V + |\partial_{x_1} V|) \land (V-g) = 0, \\ V(T,x) = (|x_1| - x_2) \lor (1 - |x_1|). \end{cases}$$

Origin of the problem (3/3)

Example We want to minimize $\xi \mapsto |\gamma_T^{t,\xi,a}|$, where $\dot{\gamma}_s^{t,\xi,a} = a(s)$ and $|\gamma| \ge 1$. Let A = [-1,1], $f_0(\xi,a) \coloneqq a$, L = 0, $J(\xi) = |\xi|$ and $g_0(\xi) = 1 - |\xi|$. The auxilliary problem reads

$$V(t,x) = \inf_{a \in \mathbb{A}_{[t,T]}} \left\{ \left| y_T^{t,x,a} \right| \bigvee \max_{s \in [t,T]} \left(1 - \left| y_s^{t,x,a} \right| \right) \right\}, \quad \begin{cases} (-\partial_t V + |\partial_{x_1} V|) \land (V-g) = 0, \\ V(T,x) = (|x_1| - x_2) \lor (1 - |x_1|). \end{cases}$$

Illustrations

Origin of the problem (3/3)

Example We want to minimize $\xi \mapsto |\gamma_T^{t,\xi,a}|$, where $\dot{\gamma}_s^{t,\xi,a} = a(s)$ and $|\gamma| \ge 1$. Let $A = [-1, 1], f_0(\xi, a) \coloneqq a, L = 0, J(\xi) = |\xi|$ and $g_0(\xi) = 1 - |\xi|$. The auxilliary problem reads

$$V(t,x) = \inf_{a \in \mathbb{A}_{[t,T]}} \left\{ \left| y_T^{t,x,a} \right| \bigvee \max_{s \in [t,T]} \left(1 - \left| y_s^{t,x,a} \right| \right) \right\}, \quad \begin{cases} (-\partial_t V + |\partial_{x_1} V|) \land (V-g) = 0, \\ V(T,x) = (|x_1| - x_2) \lor (1 - |x_1|). \end{cases}$$

Illustrations

Origin of the problem (3/3)

Example We want to minimize $\xi \mapsto |\gamma_T^{t,\xi,a}|$, where $\dot{\gamma}_s^{t,\xi,a} = a(s)$ and $|\gamma| \ge 1$. Let A = [-1,1], $f_0(\xi,a) \coloneqq a$, L = 0, $J(\xi) = |\xi|$ and $g_0(\xi) = 1 - |\xi|$. The auxilliary problem reads

$$V(t,x) = \inf_{a \in \mathbb{A}_{[t,T]}} \left\{ \left| y_T^{t,x,a} \right| \bigvee \max_{s \in [t,T]} \left(1 - \left| y_s^{t,x,a} \right| \right) \right\}, \quad \begin{cases} (-\partial_t V + |\partial_{x_1} V|) \land (V-g) = 0, \\ V(T,x) = (|x_1| - x_2) \lor (1 - |x_1|). \end{cases}$$

Dynamical formulation ([ABZ13])

Dynamic programming principle For all $(t, x) \in [0, T] \times \mathbb{R}^d$ and $h \in [0, T - t]$,

$$V(t,x) = \inf\left\{V(t+h, y_{t+h}^{t,x,a}) \bigvee \max_{s \in [t,t+h]} g\left(y_s^{t,x,a}\right) \ \middle| \ a(\cdot) \in \mathbb{A}_{[t,t+h]}\right\}.$$
(DPP)

Dynamical formulation ([ABZ13])

Dynamic programming principle For all $(t, x) \in [0, T] \times \mathbb{R}^d$ and $h \in [0, T - t]$,

$$V(t,x) = \inf\left\{V(t+h, y_{t+h}^{t,x,a}) \bigvee \max_{s \in [t,t+h]} g\left(y_s^{t,x,a}\right) \ \middle| \ a(\cdot) \in \mathbb{A}_{[t,t+h]}\right\}.$$
(DPP)

Let $N \in \mathbb{N}$, $\Delta t = T/N$ and $t_n = n\Delta t$. Introduce a first discretization of (DPP) by

$$V^{n}(x) \coloneqq \inf \left\{ V^{n+1}(F^{a}_{\Delta t}(x)) \bigvee G^{a}_{\Delta t}(x) \mid a \in \mathsf{Mes}(\mathbb{R}^{d}, A) \right\}, \quad V^{N}(x) = \mathfrak{J}(x) \lor g(x),$$

where $F_{\Delta t}^{a}(x)$ is a consistant approximation of $y_{t+\Delta t}^{t,x,a}$, and $G_{\Delta t}^{a}(x)$ approximates $\max_{s \in [t,T]} g(y_{s}^{t,x,a})$.

Dynamical formulation ([ABZ13])

Dynamic programming principle For all $(t, x) \in [0, T] \times \mathbb{R}^d$ and $h \in [0, T - t]$,

$$V(t,x) = \inf\left\{V(t+h, y_{t+h}^{t,x,a}) \bigvee \max_{s \in [t,t+h]} g\left(y_s^{t,x,a}\right) \ \middle| \ a(\cdot) \in \mathbb{A}_{[t,t+h]}\right\}.$$
(DPP)

Let $N \in \mathbb{N}$, $\Delta t = T/N$ and $t_n = n\Delta t$. Introduce a first discretization of (DPP) by

$$V^{n}(x) \coloneqq \inf \left\{ V^{n+1}(F^{a}_{\Delta t}(x)) \bigvee G^{a}_{\Delta t}(x) \mid a \in \mathsf{Mes}(\mathbb{R}^{d}, A) \right\}, \quad V^{N}(x) = \mathfrak{J}(x) \lor g(x),$$

where $F_{\Delta t}^{a}(x)$ is a consistant approximation of $y_{t+\Delta t}^{t,x,a}$, and $G_{\Delta t}^{a}(x)$ approximates $\max_{s \in [t,T]} g(y_{s}^{t,x,a})$.

Under natural assumptions, $V^n(x) \to V(t_n, x)$ locally uniformly when $\Delta t \to 0$.

Table of Contents

Control problem with state constraints

A generic Lagrangian scheme

Numerical illustration on neural networks

Formulation	Scheme and result	Illustrations
000000	⊙●000	000000000

Expression

Let $(t_n)_{n \in \llbracket 0,N \rrbracket}$ be a discretization of [0,T], and $\hat{\mathcal{A}}^n_{\Theta} \subset \mathsf{Mes}\left(\mathbb{R}^d,A\right)$ be approximation spaces.

(A3) Let $\hat{y}_{t_{n+1}}^{t_n,x,a} = \hat{F}_n(x,a)$ be a consistant scheme s.t. $\hat{F}_n(\cdot,a)$ is bijective for small Δt .

Formulation	Scheme and result	Illustrati
000000	○●○○○	000000

Expression

Let $(t_n)_{n \in \llbracket 0,N \rrbracket}$ be a discretization of [0,T], and $\hat{\mathcal{A}}^n_{\Theta} \subset \mathsf{Mes}\left(\mathbb{R}^d,A\right)$ be approximation spaces.

(A3) Let $\hat{y}_{t_{n+1}}^{t_{n},x,a} = \hat{F}_{n}(x,a)$ be a consistant scheme s.t. $\hat{F}_{n}(\cdot,a)$ is bijective for small Δt .

Lagrangian scheme Let $(\mu^n)_{n \in [\![0,N-1]\!]} \subset \mathscr{P}_1(\mathbb{R}^d)$ be densities, and define

$$\hat{V}^{N} \coloneqq \mathfrak{J} \lor g, \qquad \hat{V}^{n}(x) \coloneqq \hat{V}^{n+1}\left(\hat{y}_{t_{n+1}}^{t_{n},x,\hat{a}^{n}}\right) \bigvee g\left(x\right) \tag{1a}$$
where
$$\hat{a}^{n} \in \operatorname{argmin}_{a \in \hat{\mathcal{A}}_{\Theta}^{n}} \int_{x \in \mathbb{R}^{d}} \left[\hat{V}^{n+1}\left(\hat{y}_{t_{n+1}}^{t_{n},x,a}\right) \bigvee g\left(x\right)\right] d\mu^{n}(x). \tag{1b}$$

Formulation	Scheme and result	Illustra
000000	o●ooo	00000

Expression

Let $(t_n)_{n \in \llbracket 0,N \rrbracket}$ be a discretization of [0,T], and $\hat{\mathcal{A}}^n_{\Theta} \subset \mathsf{Mes}\left(\mathbb{R}^d,A\right)$ be approximation spaces.

(A3) Let $\hat{y}_{t_{n+1}}^{t_n,x,a} = \hat{F}_n(x,a)$ be a consistant scheme s.t. $\hat{F}_n(\cdot,a)$ is bijective for small Δt .

Lagrangian scheme Let $(\mu^n)_{n \in [\![0,N-1]\!]} \subset \mathscr{P}_1(\mathbb{R}^d)$ be densities, and define

$$\hat{V}^{N} \coloneqq \mathfrak{J} \lor g, \qquad \hat{V}^{n}(x) \coloneqq \hat{V}^{n+1}\left(\hat{y}_{t_{n+1}}^{t_{n},x,\hat{a}^{n}}\right) \bigvee g\left(x\right) \tag{1a}$$
where
$$\hat{a}^{n} \in \underset{a \in \hat{\mathcal{A}}_{\Theta}^{n}}{\operatorname{argmin}} \int_{x \in \mathbb{R}^{d}} \left[\hat{V}^{n+1}\left(\hat{y}_{t_{n+1}}^{t_{n},x,a}\right) \bigvee g\left(x\right)\right] d\mu^{n}(x). \tag{1b}$$

Remark – Storage The approximations \hat{V}^n are just notations (only $(\hat{a}^n)_{n \in [0, N-1]}$ is stored).

• Storing \hat{V}^n : more memory, possible loss of precision, theoritical reduction of computation.

Formul	ation
00000	

- Storing \hat{V}^n : more memory, possible loss of precision, theoritical reduction of computation.
- Introduction of a substep approximation of $\max_{s \in [t_n, t_{n+1}]} g(y_s^{t,x,a})$ (keeping a fixed):

Figure: With substeps

Formu	lation

- Storing \hat{V}^n : more memory, possible loss of precision, theoritical reduction of computation.
- Introduction of a substep approximation of $\max_{s \in [t_n, t_{n+1}]} g(y_s^{t,x,a})$ (keeping a fixed):

Figure: Without substeps

Formul	lation

- Storing \hat{V}^n : more memory, possible loss of precision, theoritical reduction of computation.
- Introduction of a substep approximation of $\max_{s \in [t_n, t_{n+1}]} g(y_s^{t,x,a})$ (keeping a fixed):

Figure: With substeps

Formu	lation

- Storing \hat{V}^n : more memory, possible loss of precision, theoritical reduction of computation.
- Introduction of a substep approximation of $\max_{s \in [t_n, t_{n+1}]} g(y_s^{t,x,a})$ (keeping a fixed):

Figure: With substeps

Form	ula	tio	

- Storing \hat{V}^n : more memory, possible loss of precision, theoritical reduction of computation.
- Introduction of a substep approximation of $\max_{s \in [t_n, t_{n+1}]} g(y_s^{t,x,a})$ (keeping a fixed):

Figure: With substeps

(A4)

Main result

Assume that

- $\hat{F}_n(x,\cdot)$ is continuous for small enough Δt , and $\left|\hat{F}_n(x,a)\right| \leqslant |x| + C\Delta t(1+|x|)$.
- The approximation spaces satisfy $\overline{\lim_{\Theta \to \infty} \hat{\mathcal{A}}_{\Theta}^n} = \operatorname{Lip}\left(\mathbb{R}^d, A\right)$ in $L^1_{\mu^n}$.
- The densities $\mu^n=\rho^n\mathcal{L}$ are such that $\hat{F}(\operatorname{supp}\rho^n)\subset\operatorname{supp}\rho^{n+1}$, and

$$C_{n,\Delta t} \coloneqq \sup_{x \in \mathbb{R}^d} \sup_{a \in A} \frac{\rho^n(x)}{\rho^{n+1} \circ \hat{F}(x, a)} < \infty$$

(A4)

Main result

Assume that

- $\hat{F}_n(x, \cdot)$ is continuous for small enough Δt , and $\left|\hat{F}_n(x, a)\right| \leq |x| + C\Delta t(1+|x|)$.
- The approximation spaces satisfy $\overline{\lim_{\Theta \to \infty} \hat{\mathcal{A}}_{\Theta}^n} = \mathsf{Lip}\left(\mathbb{R}^d, A\right)$ in $L^1_{\mu^n}$.
- The densities $\mu^n=\rho^n\mathcal{L}$ are such that $\hat{F}(\operatorname{supp}\rho^n)\subset\operatorname{supp}\rho^{n+1}$, and

$$C_{n,\Delta t} := \sup_{x \in \mathbb{R}^d} \sup_{a \in A} \frac{\rho^n(x)}{\rho^{n+1} \circ \hat{F}(x, a)} < \infty$$

Convergence ([BPW22]) Under (A1) to (A4), $\lim_{\Theta \to \infty} \max_{n \in [\![0,N]\!]} \int |\hat{V}^n - V^n| d\mu^n = 0.$

• Statement in [BPW22] is a parametric result with explicit formula, where the approximation errors η_k may be chosen (at the expense of large Θ_n).

- Statement in [BPW22] is a parametric result with explicit formula, where the approximation errors η_k may be chosen (at the expense of large Θ_n).
- If analytical controls are Lipschitz and ρ^n are the uniform densities, result for arbitrary N.

- Statement in [BPW22] is a parametric result with explicit formula, where the approximation errors η_k may be chosen (at the expense of large Θ_n).
- If analytical controls are Lipschitz and ρ^n are the uniform densities, result for arbitrary N.

In the literature, this type of results is found in the neural network community. In particular,

• [HPBL21] and [BHLP22] analyze a similar problem in the context of stochastic optimization. The presented scheme is inspired from the *performance iteration* scheme of the authors, where the error analysis relies on diffusion, and related to the work of [BD07].

- Statement in [BPW22] is a parametric result with explicit formula, where the approximation errors η_k may be chosen (at the expense of large Θ_n).
- If analytical controls are Lipschitz and ρ^n are the uniform densities, result for arbitrary N.

In the literature, this type of results is found in the neural network community. In particular,

- [HPBL21] and [BHLP22] analyze a similar problem in the context of stochastic optimization. The presented scheme is inspired from the *performance iteration* scheme of the authors, where the error analysis relies on diffusion, and related to the work of [BD07].
- A similar error analysis is performed in [GPW20, GPW21], using GroupSort networks.

- Statement in [BPW22] is a parametric result with explicit formula, where the approximation errors η_k may be chosen (at the expense of large Θ_n).
- If analytical controls are Lipschitz and ρ^n are the uniform densities, result for arbitrary N.

In the literature, this type of results is found in the neural network community. In particular,

- [HPBL21] and [BHLP22] analyze a similar problem in the context of stochastic optimization. The presented scheme is inspired from the *performance iteration* scheme of the authors, where the error analysis relies on diffusion, and related to the work of [BD07].
- A similar error analysis is performed in [GPW20, GPW21], using GroupSort networks.
- Global regression is studied (for instance) in [SS18] (DGM), or [HL20] for BSDEs.

Table of Contents

Control problem with state constraints

A generic Lagrangian scheme

Numerical illustration on neural networks

Neural network Let L be a number of layers, and $(d_k)_{k \in [\![0,L]\!]}$ be natural numbers. A map $\mathscr{R} : \mathbb{R}^{d_0} \to \mathbb{R}^{d_L}$ is a feedforward neural network if it is of the form

 $\mathscr{R} = \sigma_L \circ \mathcal{L}_L \circ \cdots \circ \sigma_1 \circ \mathcal{L}_1, \qquad \sigma_i : \mathbb{R}^{d_i} \to \mathbb{R}^{d_i} \text{ nonlinear}, \quad \mathcal{L}_i : \mathbb{R}^{d_{i-1}} \to \mathbb{R}^{d_i} \text{ linear}.$

Neural network Let L be a number of layers, and $(d_k)_{k \in [\![0,L]\!]}$ be natural numbers. A map $\mathscr{R} : \mathbb{R}^{d_0} \to \mathbb{R}^{d_L}$ is a feedforward neural network if it is of the form

 $\mathscr{R} = \sigma_L \circ \mathcal{L}_L \circ \cdots \circ \sigma_1 \circ \mathcal{L}_1, \qquad \sigma_i : \mathbb{R}^{d_i} \to \mathbb{R}^{d_i} \text{ nonlinear}, \quad \mathcal{L}_i : \mathbb{R}^{d_{i-1}} \to \mathbb{R}^{d_i} \text{ linear}.$

In the sequel, $d_1 = \cdots = d_{L-1}$, $d_0 = d$ is the space dimension, and $d_L = \kappa$.

Neural network Let L be a number of layers, and $(d_k)_{k \in [\![0,L]\!]}$ be natural numbers. A map $\mathscr{R} : \mathbb{R}^{d_0} \to \mathbb{R}^{d_L}$ is a feedforward neural network if it is of the form

$$\mathscr{R} = \sigma_L \circ \mathcal{L}_L \circ \cdots \circ \sigma_1 \circ \mathcal{L}_1, \qquad \sigma_i : \mathbb{R}^{d_i} \to \mathbb{R}^{d_i} \text{ nonlinear}, \quad \mathcal{L}_i : \mathbb{R}^{d_{i-1}} \to \mathbb{R}^{d_i} \text{ linear}.$$

In the sequel, $d_1 = \cdots = d_{L-1}$, $d_0 = d$ is the space dimension, and $d_L = \kappa$.

• Various activations (ReLU max. (0, x), sigmoid $(1 + e^{-x})^{-1}$, GroupSort sort $\downarrow(x)$)...

Neural network Let L be a number of layers, and $(d_k)_{k \in [\![0,L]\!]}$ be natural numbers. A map $\mathscr{R} : \mathbb{R}^{d_0} \to \mathbb{R}^{d_L}$ is a *feedforward neural network* if it is of the form

$$\mathscr{R} = \sigma_L \circ \mathcal{L}_L \circ \cdots \circ \sigma_1 \circ \mathcal{L}_1, \qquad \sigma_i : \mathbb{R}^{d_i} o \mathbb{R}^{d_i}$$
 nonlinear, $\mathcal{L}_i : \mathbb{R}^{d_{i-1}} o \mathbb{R}^{d_i}$ linear.

In the sequel, $d_1 = \cdots = d_{L-1}$, $d_0 = d$ is the space dimension, and $d_L = \kappa$.

- Various activations (ReLU max. (0, x), sigmoid $(1 + e^{-x})^{-1}$, GroupSort sort₁(x))...
- Density in the space of continuous functions under mild assumptions (Lemma 16.1 of [GKKW02]).

Neural network Let L be a number of layers, and $(d_k)_{k \in [\![0,L]\!]}$ be natural numbers. A map $\mathscr{R} : \mathbb{R}^{d_0} \to \mathbb{R}^{d_L}$ is a feedforward neural network if it is of the form

$$\mathscr{R} = \sigma_L \circ \mathcal{L}_L \circ \cdots \circ \sigma_1 \circ \mathcal{L}_1, \qquad \sigma_i : \mathbb{R}^{d_i} o \mathbb{R}^{d_i}$$
 nonlinear, $\mathcal{L}_i : \mathbb{R}^{d_{i-1}} o \mathbb{R}^{d_i}$ linear.

In the sequel, $d_1 = \cdots = d_{L-1}$, $d_0 = d$ is the space dimension, and $d_L = \kappa$.

- Various activations (ReLU max. (0, x), sigmoid $(1 + e^{-x})^{-1}$, GroupSort sort₁(x))...
- Density in the space of continuous functions under mild assumptions (Lemma 16.1 of [GKKW02]).
- In practice, approximation very sensitive to the correct structure of the network.

We consider ${\cal T}=2$ and the obstacle-free Eikonal equation

 $-\partial_t V(t,x) + \max_{a \in \overline{\mathscr{B}}(0,1)} \left\langle \nabla V(t,x), a \right\rangle = 0, \quad \text{with} \quad V(T,x) = \min\left(\left| x + e_1 \right|, \left| x - e_1 \right| \right).$

Averil Prost

We consider ${\cal T}=2$ and the obstacle-free Eikonal equation

 $-\partial_t V(t,x) + \max_{a \in \overline{\mathscr{B}}(0,1)} \left\langle \nabla V(t,x), a \right\rangle = 0, \quad \text{with} \quad V(T,x) = \min\left(\left| x + e_1 \right|, \left| x - e_1 \right| \right).$

We consider ${\cal T}=2$ and the obstacle-free Eikonal equation

 $-\partial_t V(t,x) + \max_{a \in \overline{\mathscr{B}}(0,1)} \left\langle \nabla V(t,x), a \right\rangle = 0, \quad \text{with} \quad V(T,x) = \min\left(\left| x + e_1 \right|, \left| x - e_1 \right| \right).$

We consider ${\cal T}=2$ and the obstacle-free Eikonal equation

 $-\partial_t V(t,x) + \max_{a \in \overline{\mathscr{B}}(0,1)} \left\langle \nabla V(t,x), a \right\rangle = 0, \quad \text{with} \quad V(T,x) = \min\left(\left| x + e_1 \right|, \left| x - e_1 \right| \right).$

We consider ${\cal T}=2$ and the obstacle-free Eikonal equation

 $-\partial_t V(t,x) + \max_{a \in \overline{\mathscr{B}}(0,1)} \left\langle \nabla V(t,x), a \right\rangle = 0, \quad \text{with} \quad V(T,x) = \min\left(\left| x + e_1 \right|, \left| x - e_1 \right| \right).$

Dim d	S.G it.	Global L_∞	Global L_1 rel.	Local L_∞	Local L_1 rel.	Time
6	100000	2.16e-02	1.96e-03	4.06e-04	1.58e-04	1h26
7	200000	5.00e-02	3.41e-03	1.51e-02	1.26e-04	3h55
8	400000	1.99e-01	1.81e-02	4.39e-04	2.19e-04	10h31

Table: Errors for the Eikonal equation, ${\it N}=4$ iterations, 3 layers, 40 neurons

Dim d	S.G it.	Global L_∞	Global L_1 rel.	Local L_∞	Local L_1 rel.	Time
6	100000	2.16e-02	1.96e-03	4.06e-04	1.58e-04	1h26
7	200000	5.00e-02	3.41e-03	1.51e-02	1.26e-04	3h55
8	400000	1.99e-01	1.81e-02	4.39e-04	2.19e-04	10h31

Table: Errors for the Eikonal equation, N = 4 iterations, 3 layers, 40 neurons

Averil Prost

Dim d	S.G it.	Global L_∞	Global L_1 rel.	Local L_∞	Local L_1 rel.	Time
6	100000	2.16e-02	1.96e-03	4.06e-04	1.58e-04	1h26
7	200000	5.00e-02	3.41e-03	1.51e-02	1.26e-04	3h55
8	400000	1.99e-01	1.81e-02	4.39e-04	2.19e-04	10h31

Table: Errors for the Eikonal equation, ${\it N}=4$ iterations, 3 layers, 40 neurons

Dim d	S.G it.	Global L_∞	Global L_1 rel.	Local L_∞	Local L_1 rel.	Time
6	100000	2.16e-02	1.96e-03	4.06e-04	1.58e-04	1h26
7	200000	5.00e-02	3.41e-03	1.51e-02	1.26e-04	3h55
8	400000	1.99e-01	1.81e-02	4.39e-04	2.19e-04	10h31

Table: Errors for the Eikonal equation, N = 4 iterations, 3 layers, 40 neurons

Averil Prost

Minimalist analysis

Dim d	S.G it.	Global L_∞	Global L_1 rel.	Local L_∞	Local L_1 rel.	Time
6	100000	2.16e-02	1.96e-03	4.06e-04	1.58e-04	1h26
7	200000	5.00e-02	3.41e-03	1.51e-02	1.26e-04	3h55
8	400000	1.99e-01	1.81e-02	4.39e-04	2.19e-04	10h31

Table: Errors for the Eikonal equation, ${\cal N}=4$ iterations, 3 layers, 40 neurons

Averil Prost

Illustrations

The door problem (1/2)

We consider the Eikonal-advection equation with |b| > c > 0:

$$\min\left(-\partial_t V + \langle \nabla V, b \rangle + \max_{a \in \overline{\mathscr{B}}(0,1)} \langle \nabla V, ca \rangle, V - g\right) = 0, \qquad V(T, \cdot) = \max\left(g, |\cdot| - 1\right).$$

Illustrations

The door problem (1/2)

We consider the Eikonal-advection equation with |b| > c > 0:

$$\min\left(-\partial_t V + \langle \nabla V, b \rangle + \max_{a \in \overline{\mathscr{B}}(0,1)} \langle \nabla V, ca \rangle, V - g\right) = 0, \qquad V(T, \cdot) = \max\left(g, |\cdot| - 1\right).$$

Illustrations

The door problem (1/2)

We consider the Eikonal-advection equation with |b| > c > 0:

$$\min\left(-\partial_t V + \langle \nabla V, b \rangle + \max_{a \in \overline{\mathscr{B}}(0,1)} \langle \nabla V, ca \rangle, V - g\right) = 0, \qquad V(T, \cdot) = \max\left(g, |\cdot| - 1\right).$$

Averil Prost

Illustrations

The door problem (1/2)

We consider the Eikonal-advection equation with |b| > c > 0:

$$\min\left(-\partial_t V + \langle \nabla V, b \rangle + \max_{a \in \overline{\mathscr{B}}(0,1)} \langle \nabla V, ca \rangle, V - g\right) = 0, \qquad V(T, \cdot) = \max\left(g, |\cdot| - 1\right).$$

Averil Prost

Illustrations

The door problem (1/2)

We consider the Eikonal-advection equation with |b| > c > 0:

$$\min\left(-\partial_t V + \langle \nabla V, b \rangle + \max_{a \in \overline{\mathscr{B}}(0,1)} \langle \nabla V, ca \rangle, V - g\right) = 0, \qquad V(T, \cdot) = \max\left(g, |\cdot| - 1\right).$$

Averil Prost

The door problem (2/2)

dim d = 2-1 -2 10.0 7.5 5.0 2.5 0.0 -2.5 -5.0 -7.5 -15 -10 -5 -10.0

The door problem (2/2)

dim d = 2

dim d = 8

-15

-10

-5

 $\underset{00000}{\text{Scheme and result}}$

The door problem (2/2)

dim d = 2-1 -2 10.0 7.5 5.0 2.5 0.0 -2.5 -5.0 -7.5

-10.0

 $\underset{00000}{\text{Scheme and result}}$

The door problem (2/2)

dim d = 2-1 -2 10.0 7.5 5.0 2.5 0.0 -2.5 -5.0 -7.5 -15 -10 -5 -10.0

The door problem (2/2)

Thank you!

[ABZ13] Albert Altarovici, Olivier Bokanowski, and Hasnaa Zidani.

A general Hamilton-Jacobi framework for non-linear state-constrained control problems.

ESAIM: Control, Optimisation and Calculus of Variations, 19(2):337–357, April 2013.

[BD07] Christian Bender and Robert Denk.
 A forward scheme for backward SDEs.
 Stochastic Processes and their Applications, 117(12):1793–1812, December 2007.

[BHLP22] Achref Bachouch, Côme Huré, Nicolas Langrené, and Huyen Pham. Deep neural networks algorithms for stochastic control problems on finite horizon: Numerical applications.

Methodology and Computing in Applied Probability, 24(1):143–178, March 2022.

- [BPW22] Olivier Bokanowski, Averil Prost, and Xavier Warin. Neural networks for first order HJB equations and application to front propagation with obstacle terms, October 2022.
- [GKKW02] László Györfi, Michael Kohler, Adam Krzyżak, and Harro Walk. A Distribution-Free Theory of Nonparametric Regression. Springer Series in Statistics. Springer New York, New York, NY, 2002.
- [GPW20] Maximilien Germain, Huyen Pham, and Xavier Warin. Deep backward multistep schemes for nonlinear PDEs and approximation error analysis. 2020.
- [GPW21] Maximilien Germain, Huyen Pham, and Xavier Warin. Approximation error analysis of some deep backward schemes for nonlinear PDEs, September 2021.

Formulation	Scheme and result 00000	Illustrations
[HL20]	Jiequn Han and Jihao Long. Convergence of the deep BSDE method for coupled FBSDEs. <i>Probability, Uncertainty and Quantitative Risk</i> , 5(1):5, July 2020.	
[HPBL21]	Côme Huré, Huyên Pham, Achref Bachouch, and Nicolas Langrené. Deep neural networks algorithms for stochastic control problems on finite he Convergence analysis.	orizon:

SIAM Journal on Numerical Analysis, 59(1):525–557, January 2021.

[SS18] Justin Sirignano and Konstantinos Spiliopoulos. DGM: A deep learning algorithm for solving partial differential equations. Journal of Computational Physics, 375:1339–1364, December 2018.