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Objectives

Figure � Photo of an Arrano engine. The gear crankcase is the black component on the right 1

objectives of the optimization of a gear crankcase :

Improve resistance with respect to uncertain mechanical loads (avoid high
concentration of the von Mises stress)

Reduce mass

Assure airtightness

Avoid regions occupied by other components

1. Picture of a Safran HE Arrano engine.
CAUCHI Philippe, Turbomeca devient le motoriste exclusif du X4 d'Airbus Helicopters, Info Aéro
Québec, 18 February 2015. Available online at
https://infoaeroquebec.net/turbomeca-devient-le-motoriste-exclusif-du-x4-dairbus-helicopters/.
Consulted on the 5 May 2022.
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The linear elasticity equations

We consider a domain Ω composed of an elastic material with Lamé parameters λ and
µ.

The structure is clamped on the portion ΓD of its boundary, and a mechanical load g
is applied on ΓN. The free boundary is denoted Γ0.

We denote uΩ,g the elastic displacement of the structure, ε
(
uΩ,g

)
the symmetric

gradient of the displacement, and σ
(
uΩ,g

)
the Cauchy stress tensor, where :

ε
(
uΩ,g

)
=

∇uΩ,g +∇uΩ,g
T

2
,

σ
(
uΩ,g

)
= 2µε

(
uΩ,g

)
+ λI (div(uΩ,g)).

The displacement uΩ,g is the solution of
the following boundary values problem :

−divσ
(
uΩ,g

)
= 0 in Ω,

σ
(
uΩ,g

)
n = 0 on Γ0,

σ
(
uΩ,g

)
n = g on ΓN,

uΩ,g = 0 on ΓD.
g

N

0

D
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The von Mises stress

The von Mises yield criterion has been developed to assess the presence of plastic
deformation in elasto-plastic materials.

According to the von Mises criterion, a structure made of an elasto-plastic material if,
in each point of the structure, the von Mises stress sVM is lower than the uniaxial
yield stress σy .

The von Mises stress is de�ned as

sVM(x) =

√
2

3

(
σVM

(
uΩ,g(x)

)
: σVM

(
uΩ,g(x)

))
where σVM

(
uΩ,g

)
= σ

(
uΩ,g

)
− 1

3
I tr
(
σ
(
uΩ,g

))
is the deviatoric part of the stress

tensor.

The square of the von Mises stress can be interpreted as a density of distortion
energy, which is the fraction of elastic energy related to shear stresses.

The von Mises yield criterion can be used for ductile materials like aluminum or steel.
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The Lm-norm of the von Mises stress

OBJECTIVE : design a structure avoiding high concentrations of von Mises stress.

In other terms, we would like to control ∥sVM∥L∞(Ω).

PROBLEM : the L∞-norm is not di�erentiable.

SOLUTION : approximate the L∞-norm with a Lm-norm, for m > 2.

EXAMPLE :
cantilever.

Let Oadm be a class
of admissible
domains.∣∣∣∣∣∣∣∣∣∣
Find Ω ∈ Oadm

minimizing ∥sVM∥Lm(Ω)

under the constraint

Vol(Ω) ≤ 2.0. Figure � m = 2 Figure � m = 6

Volume ∥sVM∥2 ∥sVM∥6
m = 2 2.0031 1.83893 1, 7037
m = 6 2.00145 2, 0073 1, 6589
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Moving boundary approach

Consider a bounded Lipschitz domain Ω ⊂ Rd , belonging to the class of admissible
shapes Oadm.

Let θ ∈ W1,∞ (
Rd ,Rd

)
be a Lipschitz continuous vector �eld.

If ∥θ∥1,∞ < 1, the map x 7→ (I+ θ)x is a Lipschitz homeomorphism with Lipschitz
continuous inverse.

The deformed domain Ωθ is de�ned by applying the map (I+ θ) to each point of Ω :

Ωθ = (I+ θ)Ω.
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Hadamard's shape derivative

De�nition: Di�erentiable shape functional

A shape functional J : Oadm → R is Fréchet di�erentiable in Ω ∈ Oadm if

1 J(Ωθ) is well de�ned for all θ ∈ W1,∞ (
Rd ,Rd

)
such that ∥θ∥1,∞ ≤ 1,

2 there exist a linear continuous map J′(Ω)(·) : W1,∞ (
Rd ,Rd

)
→ R such that, for

all θ ∈ W1,∞ (
Rd ,Rd

)
,

J(Ωθ) = J(Ω) + J′(Ω)(θ) + o(∥θ∥1,∞).

Proposition: Hadamard's structure theorem 2

Let Ω be a C1 domain in Rd , and J : Oadm → R a di�erentiable shape functional.

The application C1(Rd ,Rd ) ∋ θ → J′(Ω)(θ) is such that, if θ · n = 0 on ∂Ω, then
J′(Ω)(θ) = 0.

Thus, is is possible to de�ne a direction of descent θd .

2. See Proposition 5.9.1 of Antoine HENROT and Michel PIERRE. Shape variation and optimization :
a geometrical analysis, Vol 28 of EMS Tracts in Mathematics. European Mathematical Society, Zürich,
2018.
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A shape optimization problem under uncertainties

Let Oadm be a class of admissible domains in R2 or R3, J : Oadm → R an objective
functional, and P : (Ω, u) 7→ P(Ω, u) ∈ R a constraint functional taking as argument a
domain Ω ∈ Oadm and a function u de�ned on Ω.

We consider the following shape optimization problem :

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

Find Ω ∈ Oadm

minimizing J(Ω)

under the constraint P(Ω, uΩ,g) ≤ M

where the state uΩ,g

(ω)

solves the

linear elasticity equation :
−divσ

(
uΩ,g

(ω)

)
= 0 in Ω,

σ
(
uΩ,g

(ω)

)
n = 0 on Γ0,

σ
(
uΩ,g

(ω)

)
n = g

(ω)

on ΓN,

uΩ,g

(ω)

= 0 on ΓD.

We consider the mechanical load g to be a random variable belonging to a suitable
Bochner space.

Since the term P(Ω, uΩ,g) is a random variable, we have to express the constraint as a
deterministic quantity.

Here, we consider its expected value.
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Multilinear functionals and their shape derivatives

We focus on the case of shape-di�erentiable functionals P(·, ·) with a particular
structure.

Let PΩ : W1,m (Ω)× · · ·W1,m (Ω)︸ ︷︷ ︸
m

→ R be an m-multilinear functional such that :

1 PΩ is continuous : PΩ (u1, . . . , um) ≤ K ∥u1∥W1,m(Ω) . . . ∥u1∥W1,m(Ω) ;

2 P(Ω, uΩ,g) = PΩ

(
uΩ,g, . . . , uΩ,g

)
if uΩ,g ∈ W1,m (Ω) ;

3 PΩ can be written as follows :

PΩ (u1, . . . , um) =

∫
Ω
(q1(u1, . . . , um) + q2(∇u1, . . . ,∇um)) dx.

Such functionals are shape-di�erentiable, and the computation of the derivative
requires an adjoint state.

Examples of such functionals include :

the mechanical compliance

C(Ω, uΩ,g) = CΩ(uΩ,g, uΩ,g) =

∫
Ω
σ (u) : ε (u) dx;

the m-th power of the Lm-norm of the von Mises stress

G(Ω, uΩ,g) = GΩ(uΩ,g, . . . , uΩ,g︸ ︷︷ ︸
m

) =

∫
Ω
(σVM (u) : σVM (u))m/2

dx.

.
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Modeling the uncertainties

Let the mechanical load g and the displacement uΩ,g be random variables with respect
to the probability space (O,F ,P).

For E
[
P(Ω, uΩ,g)

]
= E

[
PΩ

(
uΩ,g, . . . , uΩ,g

)]
to be well-de�ned, we have to assume

that uΩ,g belongs to the Bochner space Lm
(
Wm,1 (Ω);P

)
.

PROBLEM : how can we compute and di�erentiate E
[
P(Ω, uΩ,g)

]
?

IDEA : extend the approach of (Dambrine, Dapogny, Harbrecht, 2015) 3 to multilinear
functionals.

The method we propose allows to di�erentiate the inequality constraint, and relies on
the following steps :

identi�cation of the deterministic correlation tensor
Cor(g, . . . , g) = E [g ⊗ . . .⊗ g] ;

decomposition of the correlation tensor, assuming that g is a sum of independent
variables ;

computation of the shape derivative for each term of the decomposition.

3. M. Dambrine, C. Dapogny, H. Harbrecht. "Shape Optimization for Quadratic Functionals and States
with Random Right-Hand Sides". SIAM Journal on Control and Optimization 53.5 (2015) : 3081-3103.
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Tensor product of multiple Banach spaces (1)

Let us consider a vector spaces X and a positive integer m ≥ 2. We denote P̂m (Xm)
the space of all m-multilinear forms on Xm.

De�nition: Tensor product between vector spaces

For (x1, . . . , xm) ∈ Xm, the tensor product x1 ⊗ . . .⊗ xm, also written as
⊗m

i=1 xi , is

a real valued linear application de�ned on P̂m (Xm) such that, for all Pm ∈ P̂m (Xm),(
m⊗
i=1

xi

)
(Pm) = Pm(x1, . . . , xm).

The m-tensor product of the vector space X is de�ned as :

m⊗
i=1

X = span

{
m⊗
i=1

xi such that xi ∈ X ∀i = 1 . . .m

}
.
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Tensor product of multiple Banach spaces (2)

De�nition: Projective norm

Let X be a Banach space provided with the norm ∥·∥X . By de�nition, every element u
of
⊗m

i=1 X can be written as a �nite sum of tensor products :

u =
∑N

j=1 x
j
1 ⊗ . . .⊗ x jm, but such representation is not necessarily unique. Let π (·) be

the following real mapping, de�ned on
⊗m

i=1 X :

π (u) = inf


N∑
j=1

(
m∏
i=1

∥∥∥x ji ∥∥∥X
)

: u =
N∑
j=1

x j1 ⊗ . . .⊗ x jm

 .

The function π (·) is called projective norm.

De�nition: Projective product space

The completion of the normed vector space
⊗m

i=1 X with respect to the projective
norm π (·) is the projective product space, which is a Banach space and is denoted

as
⊗̂m

π,i=1X .
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The correlation tensor

Let (O,F ,P) be a probability space, and X a Banach space. Let us consider the
Bochner spaces Lm (X ;P), and m random variables x1, . . . xm ∈ Lm (X ;P).

De�nition: Correlation tensor

The correlation operator Corm : (Lm (X ;P))m →
⊗̂m

π,i=1X maps a vector of m
random variables to their correlation tensor :

Corm(x1, . . . , xm) = E [x1 ⊗ . . .⊗ xm].

The term Corm(x1, . . . , xm) is the correlation tensor relative to the variables
x1, . . . , xm

Proposition: Expectation of a multilinear operator

Let Pm : Xm → R a bounded m-multilinear operator. Then, there exists a unique

bounded, real-valued, linear operator P̂m de�ned on
⊗̂m

π,i=1X such that these three

statements hold true for all (x1, . . . , xm) ∈ (Lm (X ;P))m :

1 Pm(x1, . . . , xm) ∈ L1C(O,P),
2 Pm(x1(ω), . . . , xm(ω)) = P̂m (x1(ω)⊗ . . . xn(ω)), for almost all ω ∈ O,

3 E [Pm(x1, . . . , xm)] = P̂m (Corm(x1, . . . , xm)).
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The correlation operator Corm : (Lm (X ;P))m →
⊗̂m

π,i=1X maps a vector of m
random variables to their correlation tensor :

Corm(x1, . . . , xm) = E [x1 ⊗ . . .⊗ xm].

The term Corm(x1, . . . , xm) is the correlation tensor relative to the variables
x1, . . . , xm

Proposition: Expectation of a multilinear operator

Let Pm : Xm → R a bounded m-multilinear operator. Then, there exists a unique

bounded, real-valued, linear operator P̂m de�ned on
⊗̂m

π,i=1X such that these three

statements hold true for all (x1, . . . , xm) ∈ (Lm (X ;P))m :

1 Pm(x1, . . . , xm) ∈ L1C(O,P),
2 Pm(x1(ω), . . . , xm(ω)) = P̂m (x1(ω)⊗ . . . xn(ω)), for almost all ω ∈ O,

3 E [Pm(x1, . . . , xm)] = P̂m (Corm(x1, . . . , xm)).
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Optimization problem in elasticity under uncertainties

We can now come back to the initial shape optimization problem under uncertainties.∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

Find Ω ∈ Oadm

minimizing J(Ω)

under the constraint E
[
P(Ω, uΩ,g)

]
≤ M

where the state uΩ,g(ω) solves the

linear elasticity equation :
−divσ

(
uΩ,g(ω)

)
= 0 in Ω,

σ
(
uΩ,g(ω)

)
n = 0 on Γ0,

σ
(
uΩ,g(ω)

)
n = g(ω) on ΓN,

uΩ,g(ω) = 0 on ΓD.

We consider g ∈ Lm
(
L2(ΓN);P

)
to be a �nite sum of random variables as in :

g(ω) =
N∑

k=1

gk ξk (ω), (1)

where, all gk ∈ L2(ΓN) are regular mechanical loads, and ξk ∈ Lm (R;P) are mutually
independent real-valued random variables.
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Shape derivative under uncertainties (1)

Proposition: Shape derivative of the expectation of a multilinear functional (1)

Let Ω be a C1 domain belonging to the interior of Oadm. Moreover, let us consider
that g ∈ Lm

(
L2(ΓN);P

)
can be decomposed as in (1), where the N real random

variables ξi ∈ Lm (R;P) are mutually independent.
Then, we can write the shape derivative of the objective in Ω as follows :

d

dΩ
E
[
P(Ω, uΩ,g)

]
(θ) = −

N∑
j=1

∫
Γ0

(θ · n)
(
σ
(
uj
)
: ε
(
wj

))
ds

+
∑

k⃗∈A(1,m),N

(
α(k⃗)

∫
Γ0

(θ · n) (q1(uk1, . . . , ukm) + q2(∇uk1, . . . ,∇ukm)) ds

)
.

...
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Shape derivative under uncertainties (2)

Proposition: Shape derivative of the expectation of a multilinear functional (2)
...
The N states u1, . . . , uN solve the state equation for g1, . . . , gN respectively, while the
N adjoint states w1, . . . ,wN solve the following adjoint problems :

−divσ
(
wj

)
=

m∑
i=1

∑
k⃗∈Ai,j

(1,m),N

α(k⃗)
(

∂q1
∂vi

(uk1, . . . , ukm)

− div ∂q2
∂Vi

(∇uk1, . . . ,∇ukm)
)

in Ω,

σ
(
wj

)
n =

m∑
i=1

∑
k⃗∈Ai,j

(1,m),N

α(k⃗)
(

∂q2
∂Vi

(∇uk1, . . . ,∇ukm)
)T

n on Γ0 ∪ ΓN,

wj = 0 on ΓD.

A(1,m),N = {1, . . . ,N}m ;

Ai,j
(1,m),N

=
{
k⃗ ∈ A(1,m),N such that ki = i

}
⊂ A(1,m),N ;

for ξ1, . . . , ξm ∈ Lm (R;P) , we denote µi,j = E
[
ξij

]
;

�nally, for k⃗ = (k1, . . . , km) ∈ A(1,m),N , we denote

α(k⃗) =
∏N

j=1

(
E

[
ξ
C
j

k⃗

j

])
=
∏N

j=1 µC
j

k⃗
,j
.
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Complexity

We denote T (PΩ(m),N) the number of terms appearing in the expression of the
shape derivative of a m-multilinear functional, when the load g ∈ Lm

(
L2(ΓN);P

)
is

decomposed in N mutually independent random variables.

2 4 6 8 10 12
m

101

102

103


(⋅(
m
),
2)

 (⋅(m), 2) for different degrees m
PΩ(m): No symmetry
SΩ(m): Complete symmetry
GΩ(m): Von Mises symmetry

Figure � Case of N = 2 random variables
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Figure � Case of N = 3 random variables

T (PΩ(m),N) = Nm, T (SΩ(m),N) =
(N +m − 1

m

)
,

T (GΩ(m),N) =
(N(N+1)

2
+ m

2
− 1

m
2

)
.
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3D optimization under von Mises constraint

We consider a set of 3D admissible shapes Oadm, sharing the portions ΓD and ΓN, a
space of events O, and a probability measure P. We suppose g to be the random
mechanical load applied to ΓN.

We aim to solve the following shape optimization
problem.∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

Find Ω ∈ Oadm

minimizing Ω 7→ Vol(Ω),

such that, for all ω ∈ O,

the state uΩ,g(ω) ∈
[
H
1(Ω)

]d
solves :

−divσ
(
uΩ,g(ω)

)
= 0 in Ω,

σ
(
uΩ,g(ω)

)
n = g(ω) on ΓN,

σ
(
uΩ,g(ω)

)
n = 0 on Γ0,

uΩ,g(ω) = 0 on ΓD.

and the following constraint holds :

E
[
G6(Ω, uΩ,g)

]
≤ M6

0 ,

where G6(Ω, uΩ,g) = ∥sVM∥66
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3D optimization under von Mises constraint

We consider a set of 3D admissible shapes Oadm, sharing the portions ΓD and ΓN, a
space of events O, and a probability measure P. We suppose g to be the random
mechanical load applied to ΓN.

We aim to solve the following shape optimization
problem.∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

Find Ω ∈ Oadm

minimizing Ω 7→ Vol(Ω),

such that, for all ω ∈ O,

the state uΩ,g(ω) ∈
[
H
1(Ω)

]d
solves :

−divσ
(
uΩ,g(ω)

)
= 0 in Ω,

σ
(
uΩ,g(ω)

)
n = g(ω) on ΓN,

σ
(
uΩ,g(ω)

)
n = 0 on Γ0,

uΩ,g(ω) = 0 on ΓD.

and the following constraint holds :

E
[
G6(Ω, uΩ,g)

]
≤ M6

0 ,

where G6(Ω, uΩ,g) = ∥sVM∥66

Figure � Representation of the
structure to be optimized. The
surface ΓD is the thin grey stripe on
the lateral surface, while ΓN is the
ring-shaped portion of the upper
surface marked in yellow.



Presentation of the problem Optimization of the stochastic moments Numerical results Conclusions and future developments

Numerical result (Isotropic load)

Load g(ω) gx X (ω) + gy Y (ω)
Variance of X 2.5
Variance of Y 2.5
Treshold M0 3.0
Iterations of 200
optimization algorithm
Time of 129 min.
execution
Final volumic fraction 0.1608

Vol(Ω)/Vol(D)
Normalized saturation 0.03002
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Numerical result (Anisotropic load)

Load g(ω) gx X (ω) + gy Y (ω)
Variance of X 1.0
Variance of Y 4.0
Treshold M0 3.0
Iterations of 200
optimization algorithm
Time of 148 min.
execution
Final volumic fraction 0.164

Vol(Ω)/Vol(D)
Normalized saturation 0.005351

of the constraint
(E [G6]−M6

0 )/M
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Summary and perspectives

Summary The approach to shape optimization adopted in this presentation

can be applied to continuous functionals that can be written as a polynomial
expression of degree m of the state of a shape optimization problem ;

allows to model for boundary value problems with a random right-hand side,
without any assumption on the size of the uncertainties ;

provides a deterministic expression for the shape derivative, which depends on the
�rst m moments of the random variables modeling the uncertain load ;

has been applied to minimize the volume of a structure under constraints on the
L6-norm of the von Mises stress, or under constraints on the expectation of a
quadratic functional.

A paper about this subject has been submitted to the journal Numerische Mathematik.

Perspectives Directions of further investigation include :

application of tensor decomposition techniques to the correlation tensor in order
to accelerate the algorithm ;

introduction of the airtightness constraint ;

industrialization of the code and coupling with the tools in use at Safran HE ;
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Constraints on the worst-case scenario

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

Find Ω ∈ Oadm

minimizing Ω 7→ Vol(Ω),

such that, for all g ∈ G,

the state uΩ,g ∈
[
H
1(Ω)

]d
solves :

−divσ
(
uΩ,g

)
= 0 in Ω,

σ
(
uΩ,g

)
n = g(ω) on ΓN,

σ
(
uΩ,g

)
n = 0 on Γ0,

uΩ,g = 0 on ΓD.

and the following constraint holds :

sup
g∈G

P(Ω, uΩ,g) ≤ M0,

where :

P(Ω, uΩ,g) = PΩ(uΩ,g, . . . , uΩ,g) ;

g 7→ P(Ω, uΩ,g) is convex ;

PΩ(·, . . . , ·) is a m-multilinear functional ;

G is a compact subset of a �nite-dimensional
Banach space.
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Constraints on the probability of exceeding a treshold

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

Find Ω ∈ Oadm

minimizing Ω 7→ Vol(Ω),

such that, for all ω ∈ O,

the state uΩ,g ∈
[
H
1(Ω)

]d
solves :

−divσ
(
uΩ,g(ω)

)
= 0 in Ω,

σ
(
uΩ,g(ω)

)
n = g(ω) on ΓN,

σ
(
uΩ,g(ω)

)
n = 0 on Γ0,

uΩ,g(ω) = 0 on ΓD.

and the following constraint holds :

P
[
P(Ω, uΩ,g) ≥ s

]
≤ M0,

REMARK : It is necessary to assume that g follows a given probability distribution.
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Level-set function

D

x

y

z Ω 

Let D ⊂ Rd be an open and bounded domain in Rd .

The shape Ω ⊂ D ⊂ Rd is parametrized by a continuous level set function
ϕΩ : Rd → R such that : 

ϕΩ(x) > 0 if x /∈ Ω̄,

ϕΩ(x) = 0 if x ∈ ∂Ω,

ϕΩ(x) < 0 if x ∈ Ω̊.

Let V (·; ·) : [0,T ]×D → Rd be a smooth Lagrangian velocity �eld de�ned on D for a
time interval [0,T ].

It is possible to associate a direction of descent θ with a velocity �eld Vθ using a
suitable Hilbertian extension procedure.

In this case, the level-set function evolves according to the advection equation

∂ϕ

∂t
(t; x) + Vθ(t; x) · ∇ϕ(t; x) = 0.
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Computation of the shape derivative

Proposition: Shape derivative of a di�erentiable multilinear functional

Let Ω be a C1 domain belonging to the interior of Oadm, and P(·, ·) a continuous
shape functional that respects the structure outlined earlier.
Then, its shape derivative can be written as :

d

dΩ
P(Ω, uΩ,g)(θ) =

∫
Γ0

(θ · n)
(
q1(uΩ,g, . . . , uΩ,g)

+ q2(∇uΩ,g, . . . ,∇uΩ,g)− σ
(
uΩ,g

)
: ∇wΩ,g

)
ds,

where the adjoint state wΩ,g is the solution of the following problem :
−divσ

(
wΩ,g

)
=

∑m
i=1

∂q1
∂vi

(uΩ,g, . . . , uΩ,g)

−div ∂q2
∂Vi

(∇uΩ,g, . . . ,∇uΩ,g) in Ω

σ
(
wΩ,g

)
n =

∑m
i=1

∂q2
∂Vi

(∇uΩ,g, . . . ,∇uΩ,g) n on Γ0 ∩ ΓN,

wΩ,g = 0 on ΓD.

This result can be proven using Céa's fast derivation method, or by computing the
volumetric form of the Eulerian derivative and applying Hadamard's structure theorem.
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Linearization of continuous multilinear functionals

Proposition: Linearization of bounded multilinear functionals

Let us consider a real-valued, bounded, multilinear functional Pm : Xm → R.
For any Banach space B, we denote B∗ its topological dual.

Then, there exists a unique linear functional P̂m :
⊗̂m

π,i=1X → R such that :

1 the functional P̂m is continuous, and∥∥∥P̂m

∥∥∥
OP
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Shape derivative under uncertainties : notation

we introduce the following notation :

A(1,m),N = {1, . . . ,N}m is the set of all m-uples whose elements are integers
between 1 and N ;

Ai,j
(1,m),N

=
{
k⃗ ∈ A(1,m),N such that ki = i

}
⊂ A(1,m),N is the subset of all

m-uples in A(1,m),N whose i-th element is equal to j ;

given N real random variables ξ1, . . . , ξm belonging to the Bochner space

Lm (R;P) and a m-uple k⃗ = (k1, . . . , km) ∈ A(1,m),N , we denote µi,j the i-th

moment of the random variable ξj : µi,j = E
[
ξij

]
;

�nally, we denote α(k⃗) the following quantity :

α(k⃗) = α(k1, . . . , km) =
N∏
j=1

(
E

[
ξ
C
j

k⃗

j

])
=

N∏
j=1

µ
C
j

k⃗
,j
.



Sketch of the proof

Proof.

Expression of E
[
P(Ω, uΩ,g)

]
in terms of the correlation tensor :

E
[
P(Ω, uΩ,g)

]
= E

[
PΩ

(
uΩ,g, . . . , uΩ,g

)]
= P̂Ω

(
Cor(uΩ,g, . . . , uΩ,g)

)
.

Decomposition of the correlation tensor using the linearity of the functional P̂Ω :

Cor(uΩ,g, . . . , uΩ,g) =
∑

k⃗∈A(1,m),N

(
α(k⃗)

(
uk1 ⊗ . . .⊗ ukm

))
;

therefore

P̂Ω

(
Cor(uΩ,g, . . . , uΩ,g)

)
= P̂Ω

 ∑
k⃗∈A(1,m),N

(
α(k⃗)

(
uk1 ⊗ . . .⊗ ukm

)) =

∑
k⃗∈A(1,m),N

α(k⃗)P̂Ω

(
uk1 ⊗ . . .⊗ ukm

)
=

∑
k⃗∈A(1,m),N

α(k⃗)PΩ

(
uk1 , . . . , ukm

)
.

Computation of each term of the derivative.

□
REMARK : the expression of the functional and its derivative are fully deterministic,
and depend on the �rst m stochastic moments of the random variables.
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Numerical tools

Mesh generation and adaptation

medit 4 for the mesh generation in 3D ;

mmg platform for the mesh adaptation (in 2D and 3D) ;

Finite-element method

FreeFem++ 5 ;

Level-set function

mshdist 6 for the computation of the signed-distance level-set function ;

advect 6 for the solution of the advection equation ;

Optimization algorithm

nullspace optimization developed in python.

5. Coupled with python using the packages pymedit and pyfreefem respectively.

6. Available in the ISCD toolbox.



Complexity (1)

We denote T (PΩ(m),N) the number of terms appearing in the expression of the
shape derivative of a m-multilinear functional, when the load g ∈ Lm

(
L2(ΓN);P

)
is

decomposed in N mutually independent random variables.

For a generic multilinear functional PΩ, the number of terms to consider increases
exponentially with m :

T (PΩ(m),N) = Nm.

It is possible to use the symmetries of the multilinear functional in order to reduce the
number of terms to compute.

If SΩ is a completely symmetric m-multilinear function, we have

T (SΩ(m),N) =
(N +m − 1

m

)
.

The functional GΩ(·, . . . , ·) related to the m-th norm of the von Mises stress presents
some symmetries but is not fully symmetric.

T (GΩ(m),N) =
(N(N+1)

2
+ m

2
− 1

m
2

)
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The optimum as an intermediate shape
Heigth of the domain 2.5
Length of the domain 3.0
Elastic coe�cients

Young's modulus E 15
Poisson's ration ν 0.35

Mechanical loads
Horizontal term gx 1.0
Vertical term gy 1.0

Stochastic moments
Expectations E [ξx ] = E [ξy ] 0.0
Variances Var [ξx ] = Var [ξy ] 1.0
Correlation E [ξx ξy ] 0.0

ΓD 

Γ0 

  

ΓN 

g(ω) 

Figure � Illustration of the problem :
g(ω) = gxξx (ω) + gyξy (ω).

Figure � Initial condition
for the three simulations

Figure � Optimized shape
for a horizontal load

Figure � Optimized
shape for a vertical load

Figure � Optimized shape
for an uncertain load



Stochastic moments of the compliance

We consider a 2D elastic structure subject to a
mechanical load on the upper surface.
The mechanical load g is a random variable such
that :

g(ω) = g0 + gXX (ω) + gYY (ω).

We would like to minimize the volume of the
structure under constraintson the average and
variance of the mechanical compliance.

ΓN

D Γ0

ΓD

Ω

g

Since the compliance is a quadratic functional, its variance can be written as the
expectation of a 4 degree polynomial of the state.
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Expression of the random variables

We consider the following family of random variables, depending on the real
parameters α ∈ [0, π

2
[ and β ∈ [0, π

2
[ :

Xα = T sin(α) + NX cos(α); Yα,β =
sin(β)√
Var[X 2

α]

(
X 2
α − E

[
X 2
α

])
+ NY cos(β),

where T ∼ U({−1, 1}), NX ∼ N (0, 1), and NY ∼ N (0, 1) are independent random
variables.

−3 −2 −1 0 1 2 3
0.0

0.2

0.4

0.6

0.8

1.0

1.2
α = 0
α = 0.75 π /2
α = 0.9 π /2

Figure � Density of Xα for
di�erent values of α.
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1.0

1.2
α = any value, β = 0
α = 0.5 π /2, β = 0.5 π/2
α = 0.75 π /2, β = 0.9 π/2
α = 0 π /2, β = 0.9 π/2

Figure � Density of Yα,β for
di�erent values of α, β.

For all choice of α and β, the random variables Xα and Yα,β are centered, normalized
and decorrelated, but not necessarily independent.

E [Xα] = E
[
Yα,β

]
= 0; E

[
X 2
α

]
= E

[
Y 2
α,β

]
= 1; E

[
Xα Yα,β

]
= 0.



Expression of the random variables

We consider the following family of random variables, depending on the real
parameters α ∈ [0, π

2
[ and β ∈ [0, π

2
[ :

Xα = T sin(α) + NX cos(α); Yα,β =
sin(β)√
Var[X 2

α]

(
X 2
α − E

[
X 2
α

])
+ NY cos(β),

where T ∼ U({−1, 1}), NX ∼ N (0, 1), and NY ∼ N (0, 1) are independent random
variables.

−3 −2 −1 0 1 2 3
0.0

0.2

0.4

0.6

0.8

1.0

1.2
α = 0
α = 0.75 π /2
α = 0.9 π /2

Figure � Density of Xα for
di�erent values of α.

−2 0 2 4 6
0.0

0.2

0.4

0.6

0.8

1.0

1.2
α = any value, β = 0
α = 0.5 π /2, β = 0.5 π/2
α = 0.75 π /2, β = 0.9 π/2
α = 0 π /2, β = 0.9 π/2

Figure � Density of Yα,β for
di�erent values of α, β.

For all choice of α and β, the random variables Xα and Yα,β are centered, normalized
and decorrelated, but not necessarily independent.

E [Xα] = E
[
Yα,β

]
= 0; E

[
X 2
α

]
= E

[
Y 2
α,β

]
= 1; E

[
Xα Yα,β

]
= 0.



2D optimization problem

We consider a set of 2D admissible shapes Oadm, sharing the portions ΓD and ΓN, a
space of events O, and a probability measure P.

We suppose that the random mechanical load g is applied to ΓN.∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

Find Ω ∈ Oadm

minimizing Ω 7→ Vol(Ω),

such that, for all ω ∈ O,

the state uΩ,g(ω) ∈
[
H
1(Ω)

]d
solves :

−divσ
(
uΩ,g(ω)

)
= 0 in Ω,

σ
(
uΩ,g(ω)

)
n = g(ω) on ΓN,

σ
(
uΩ,g(ω)

)
n = 0 on Γ0,

uΩ,g(ω) = 0 on ΓD.

and the following constraints hold :

E
[
C2(Ω, uΩ,g)

]
≤ M0,

Var
[
C2(Ω, uΩ,g)

]
≤ M1,

where

C2(Ω, uΩ,g) =
∫
Ωσ
(
uΩ,g(ω)

)
: ε
(
uΩ,g(ω)

)
dx.



Numerical parameters and results (1)

Heigth of the domain 1.0
Length of the domain 1.0
Mesh size parameters

minimal element size hmin 0.01
maximal element size hmax 0.02
gradation value hgrad 0.5

Elastic coe�cients
Young's modulus E 15
Poisson's ration ν 0.35

Mechanical loads
Fixed load g0 1.2
Horizontal term gx 1.0
Vertical term gy 0.3

Tresholds for the inequality constraints
Treshold for the expected value M0 2.0
Treshold for the variance M0 3.0625

Number of iterations 500

Figure � Case 1 : α = 0.0,
β = 0.95

Figure � Case 2 : α = 0.95,
β = 0.0

./pictures/gifs/2D_dependent.gif
./pictures/gifs/2D_independent.gif


Numerical parameters and results (2)

Case 1 Case 2

α 0.0 0.95 π
2

β 0.95 π
2

0.0

Duration (minutes) 25.82 30.80
Final volume Vol(Ω) 0.435348 0.330348

Saturation of
the constraints

E
[
C2(Ω, uΩ,g)

]
−M0 −0.56886 0.004041

Var
[
C2(Ω, uΩ,g)

]
−M1 0.03952 −2.94801
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The expected value as a constraint

In the shape optimization problem we have considered the expectation of the m-th
power of the Lm-norm of the von Mises stress sVM as a constraint.

An upper bound on E
[
∥sVM∥mLm(Ω)

]
allows to bound E

[
∥sVM∥Lm(Ω)

]
as well thanks

to the convexity of x 7→ |x |m :

E
[
∥sVM∥mLm(Ω)

]
≤ E

[
∥sVM∥Lm(Ω)

]m
≤ Mm

0 .

However, there is no reason to assume that an admissible shape Ω ∈ Oadm minimizing

E
[
∥sVM∥mLm(Ω)

]
is also a minimizer for E

[
∥sVM∥Lm(Ω)

]
.
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