Numerical computation of the fractional Laplacian with $\alpha=1$ by means of Gaussian hypergeometric functions and fast convolution methods*

De La Hoz FRANCISCO, Department of Mathematics - UPV/EHU
Girona IVAN, Department of Mathematics - UPV/EHU
Cuesta CARLOTA M., Department of Mathematics - UPV/EHU

In this paper, we develop a fast and spectrally accurate pseudospectral method to approximate numerically the fractional Laplacian $(-\Delta)^{1 / 2}$ on \mathbb{R}. More precisely, the change of variable $x=L \cot (s)$, with $L>0$ and $s \in(0, \pi)$, we allow us to map \mathbb{R} into a finite interval where spectral or psedo-spectral methods might be performed. Indeed, we have obtained the following representation for the fractional Laplacian with $\alpha=1$ in this new variable applied to elementary trigonometric functions :

$$
\begin{gathered}
(-\Delta)^{1 / 2} e^{i k \operatorname{arccot}(x / L)}=(-\Delta)_{s}^{1 / 2} e^{i k s}=\frac{-2 i}{L \pi(k+2)}-\frac{k}{L} \sin ^{2}(s) e^{i k s}+\frac{8 i_{2} F_{1}\left(1,-k / 2-1 ;-k / 2+2 ; e^{i 2 s}\right)}{L \pi\left(4-k^{2}\right)} \\
\quad=\frac{-2 i}{L \pi(k+2)}-\frac{2 i k}{L \pi} e^{i k s}\left(\cos (s)+\sin ^{2}(s) \ln (\cot (s / 2))+\sum_{n=0}^{(k-1) / 2} \frac{4 e^{-i(2 n+1) s}}{(2 n-1)(2 n+1)(2 n+3)}\right)
\end{gathered}
$$

for an odd positive number k. Using the fact that $(-\Delta)_{s}^{1 / 2} e^{i k s}=\overline{(-\Delta)_{s}^{1 / 2} e^{-i k s}}$, we obtain it for odd negative numbers. Moreover, the other crucial point of this paper, is the use of a fast convolution algorithm to compute simultaneously $(-\Delta)^{1 / 2} e^{i k s}$ for extremely large sets of odd values of n :

Lemme 1. Let $M \in \mathbb{N}, a_{0}, a_{1}, \ldots, a_{M} \in \mathbb{C}$, and $s \in(0, \pi)$. Then,

$$
\begin{align*}
& \sum_{l=0}^{M} a_{l}(-\Delta)_{s}^{1 / 2} e^{i(2 l+1) s}=\frac{-i}{L \pi} \sum_{l=0}^{M} \frac{2 a_{l}}{2 l+3}-\frac{i}{L \pi}(\cos (s) \\
& \left.\quad+\sin ^{2}(s) \ln (\cot (s / 2))\right) \sum_{l=0}^{M}(4 l+2) a_{l} e^{i(2 l+1) s}+\frac{i}{L \pi} \sum_{l=0}^{M}(\tilde{b} * \tilde{c}) l e^{i 2 l s} \tag{1}
\end{align*}
$$

where P can be any natural number such that $P \geq 2 M+1$, and $(\tilde{b} * \tilde{c})_{l}$ denotes the discrete convolution of the P-periodic sequences \tilde{b}_{l} and \tilde{c}_{l}, where

$$
\tilde{b}_{l}= \begin{cases}(16 l+8) a_{l}, & 0 \leq l \leq M \\ 0, & M+1 \leq l \leq P-1\end{cases}
$$

and

$$
\tilde{c}_{l}= \begin{cases}1 / 3, & l=0 \tag{2}\\ 0, & 1 \leq l \leq P-M-1 \\ \frac{1}{(2(l-P)-3)(2(l-P)-1)(2(l-P)+1)}, & P-M \leq l \leq P-1\end{cases}
$$

The fact that $(\tilde{b} * \tilde{c})_{l}$ in (1) allows us to compute by means of a fast convolution in $\mathbf{O}(P \log (P))$ operations, whereas if we do a direct calculation we need $\mathbf{O}\left(P^{2}\right)$ operations. Because of this, we are capable of developing an efficient pseudospectral method for the computation of $(-\Delta)_{s}^{1 / 2} u(x)$.
Contact: ivan.girona@ehu.eus

[^0]
[^0]: ${ }^{*}$ This research was partially supported by the grant PID2021-126813NB-I00 funded by MCIN/AEI/10.13039/501100011033 and by "ERDF A way of making Europe", and is also supported by grant FPI-2019 of the Spanish Government.

