A multi-level fast-marching method for the minimum time problem

Marianne Akian⁽¹⁾, Stéphane Gaubert⁽¹⁾, Shanqing LIU⁽²⁾

⁽¹⁾ Inria and CMAP, École polytechnique CNRS, IP Paris Marianne.Akian@inria.fr, Stephane.Gaubert@inria.fr

⁽²⁾ CMAP, École polytechnique CNRS, IP Paris and Inria Shanqing.Liu@polytechnique.edu.

See arXiv:2303.10705

SMAI 2023, Le Gosier, Guadeloupe, 22-26 mai 2023

The Minimum Time Problem

Consider the minimum time optimal control problem:

$$\tau^{+} = \inf \tau$$

$$s.t. \begin{cases} \dot{y}(t) = f(y(t), \alpha(t))\alpha(t), \ \forall t \in [0, \tau], \\ y(0) \in \mathcal{K}_{\text{src}}, \ y(\tau) \in \mathcal{K}_{\text{dst}}, \\ y(t) \in \Omega \subset \mathbb{R}^{d} \ \forall t \in [0, \tau], \\ \alpha \in \mathcal{A} = \{\alpha : \mathbb{R}^{+} \to S_{1} : \alpha \text{ is measurable}\} \end{cases}$$

The Minimum Time Problem

 $\pi^* = \inf \pi$

Consider the minimum time optimal control problem:

$$s.t. \begin{cases} \dot{y}(t) = f(y(t), \alpha(t))\alpha(t), \ \forall t \in [0, \tau], \\ y(0) \in \mathcal{K}_{\text{src}}, \ y(\tau) \in \mathcal{K}_{\text{dst}}, \\ y(t) \in \Omega \subset \mathbb{R}^d \ \forall t \in [0, \tau], \\ \alpha \in \mathcal{A} = \{\alpha : \mathbb{R}^+ \to S_1 : \alpha \text{ is measurable} \} \end{cases}$$

It can be solved using Eikonal equation:

$$\min_{\alpha\in\mathcal{S}_1}\{(\nabla T(x)\cdot\alpha)f(x,\alpha)\}=1$$
,

or after the change of variable $v^* = 1 - e^{-\tau^*}$, the *stationary Hamilton-Jacobi Equation*:

$$F(x, v, Dv) = 0$$
 with $F(x, r, p) := -\min_{\alpha \in S_1} \{p \cdot f(x, \alpha)\alpha + 1 - r\}$.

There are 2 difficulties:

• Standard grid based space discretizations suffer from the *curse of dimensionality*:

for an error of ϵ , the storage and time complexities of finite difference, finite element or semi-Lagrangian methods is at least in the order of $(1/\epsilon)^{d/2}$.

• For a *stationary equation*, one may need to do a number of value iterations in the order of 1/*ε*.

Numerical solution of Hamilton-Jacobi equations: previous improvements

- For eikonal equations: Fast Marching Method introduced by Tsitsiklis (95) Sethian (96) is a "single pass" method.
- Recent developments: Sethian, Vladimirsky, OUMs(03), Cristiani, Falcone, SL-FM (07), Cristiani, BFM(09), Mirebeau, Riemannian FM (18).
- Computational complexity: $O(M \log M)$, where *M* is the number of discretization points. Feasible only in low dimension.
- Optimization along one or few "optimal" trajectories: Necessary conditions (Pontryagin principle); Direct optimization methods; Stochastic Dual Dynamic Programming method (SDDP) Pereira and Pinto (1991), Shapiro (2011),... for linear-convex problems, DP algorithm on a tree-structure Alla, Falcone, Saluzzi (2019) using Lipschitz continuity; Point based methods for Partially Observable Markov Decision Processes (POMDP) Pineau et al (2003), Kurniawati, Hsu, Lee (2008),...
- tropical/max-plus/idempotent methods: McEneaney (2007), Dower, Zhang (2015), Zheng Qu (2014),...

Idea of Multi-level Fast marching method

- The Fast Marching Method is a variant of the *Dijkstra's Algorithm*, which solves the shortest path problem in discrete time.
- Highway Hierarchies (Sanders, Schulte 12), accelerate the Dijkstra's algorithm (≈3000 times faster) in finding the shortest path between two given points.
- They construct coarse grids, like in the Algebraic Multigrid Method.
- For continuous minimum time problems, we shall use rather the ideas of the *Full Geometric Multigrid Method*, and *Highways* will be *optimal trajectories* on coarse grids.

The Minimum Time Problem

Consider the minimum time optimal control problem:

$$s.t. \begin{cases} \dot{y}(t) = f(y(t), \alpha(t))\alpha(t), \ \forall t \in [0, \tau], \\ y(0) \in \mathcal{K}_{\text{src}}, \ y(\tau) \in \mathcal{K}_{\text{dst}}, \\ y(t) \in \Omega \subset \mathbb{R}^d \ \forall t \in [0, \tau], \\ \alpha \in \mathcal{A} = \{\alpha : \mathbb{R}^+ \to S_1 : \alpha \text{ is measurable} \} \end{cases}$$

and $v^* = 1 - e^{-\tau^*}$,

where

 $\pi^* = \inf \pi$

- $\Omega \subset \mathbb{R}^d$ is compact, $\partial \Omega$ is C^2 ;
- $\mathcal{K}_{src}, \mathcal{K}_{dst} \subset \Omega$ closed;
- the speed f > 0 is continuous, Lipschitz continuous w.r.t x and α , and $\forall x \in \partial \Omega, \alpha \in S_1$:

$$f(x, \alpha) \alpha \cdot n(x) \leq -C < 0.$$

Characterization of value function –"To Destination"

$$\mathbf{v}^* = \inf_{\mathbf{x}\in\mathcal{K}_{\mathrm{src}}} \mathbf{v}_{\forall t}(\mathbf{x}) \ , \quad \mathbf{v}_{\forall t}(\mathbf{x}) := \inf_{\alpha\in\mathcal{A}_{\Omega,x}} \inf_{\tau} \left\{ \int_0^{\tau} \mathbf{e}^{-t} dt \mid \mathbf{y}_{\alpha}(\mathbf{x};\tau) \in \mathcal{K}_{\mathrm{dst}} \right\} \ ,$$

where $y_{\alpha}(x; t)$ denote the solution of

$$\begin{cases} \dot{y}(t) = f(y(t), \alpha(t))\alpha(t), \ \forall t \ge 0, \\ y(0) = x. \end{cases}$$

and

$$\mathcal{A}_{\Omega,x} := \{ \alpha \in \mathcal{A} \mid y_{\alpha}(x; s) \in \overline{\Omega}, \text{ for all } s \geq 0 \} \;.$$

State constrained HJ Equation (in the viscosity sense, Soner) :

$$\begin{cases} F(x, v_{\rightarrow t}(x), Dv_{\rightarrow t}(x)) = 0, & x \in \Omega \setminus \mathcal{K}_{dst}, \\ F(x, v_{\rightarrow t}(x), Dv_{\rightarrow t}(x)) \ge 0, & x \in \partial\Omega, \\ v_{\rightarrow t}(x) = 0, & x \in \mathcal{K}_{dst}; \end{cases}$$
(HJt

where $F(x, r, p) := -\min_{\alpha \in S_1} \{ p \cdot f(x, \alpha) \alpha + 1 - r. \}$

Characterization of value function –"From Source"

$$\mathbf{v}^* = \inf_{\mathbf{x} \in \mathcal{K}_{dst}} \mathbf{v}_{s}(\mathbf{x}) \ , \quad \mathbf{v}_{s}(\mathbf{x}) := \inf_{\tilde{\alpha} \in \tilde{\mathcal{A}}_{\Omega,x}} \inf_{\tau} \left\{ \int_0^{\tau} \mathbf{e}^{-t} dt \mid \tilde{\mathbf{y}}_{\tilde{\alpha}}(\mathbf{x};\tau) \in \mathcal{K}_{src} \right\} \ ,$$

where $\tilde{y}_{\tilde{\alpha}}(x; t)$ denote the solution of

$$\begin{cases} \dot{\tilde{y}}(t) = -f(\tilde{y}(t), \tilde{\alpha}(t))\tilde{\alpha}(t), \ \forall t \geq 0 \ , \\ \tilde{y}(0) = x \ . \end{cases}$$

and

$$ilde{\mathcal{A}}_{\Omega,x} = \{ ilde{lpha} \in \mathcal{A} \mid ilde{y}_{ ilde{lpha}}(x; s) \in \overline{\Omega}, ext{for all } s \geq 0 \}.$$

State constrained HJ equation (in the viscosity sense, Soner) :

$$\begin{cases} F(x, v_{s}(x), -Dv_{s}(x)) = 0, & x \in \Omega \setminus \mathcal{K}_{src}, \\ F(x, v_{s}(x), -Dv_{s}(x)) \ge 0, & x \in \partial\Omega, \\ v_{s}(x) = 0, & x \in \mathcal{K}_{src}; \end{cases}$$
(HJ_s)

where $F(x, r, p) := -\min_{\alpha \in S_1} \{ p \cdot f(x, \alpha) \alpha + 1 - r \}$

The Optimal Trajectories

Denote the set of optimal points in $\mathcal{K}_{src}, \mathcal{K}_{dst}$:

$$\mathcal{X}_{\mathrm{src}} = \operatorname{Argmin}_{x \in \mathcal{K}_{\mathrm{src}}} v_{\forall \mathrm{t}}(x), \ \mathcal{X}_{\mathrm{dst}} = \operatorname{Argmin}_{x \in \mathcal{K}_{\mathrm{dst}}} v_{\mathrm{s}^{\flat}}(x) \ .$$

Denote Γ_x^* , $\tilde{\Gamma}_x^*$ the set of geodesic points (points of optimal trajectories) for the two directions' problems.

Proposition

$$\cup_{x\in\mathcal{X}_{src}}\{\Gamma_x^*\}=\cup_{x\in\mathcal{X}_{dst}}\{\tilde{\Gamma}_x^*\}:=\Gamma^*\text{, geodesic points from }\mathcal{K}_{src}\text{ to }\mathcal{K}_{dst}.$$

$$\inf_{\substack{x \in \mathcal{K}_{\mathrm{src}}}} v_{\rightarrow t}(x) = \inf_{\substack{x \in \mathcal{K}_{\mathrm{dst}}}} v_{\mathrm{s}\rightarrow}(x) := v^*$$
$$\leq \mathcal{F}_{v}(x) := \{v_{\mathrm{s}\rightarrow}(x) + v_{\rightarrow t}(x) - v_{\mathrm{s}\rightarrow}(x)v_{\rightarrow t}(x)\} .$$

 $\mathcal{F}_{v}(x) = v^{*} \Leftrightarrow x \in \Gamma^{*}.$

The above formula is similar to:

$$au^* \leq T_{\mathrm{s}}(x) + T_{\mathrm{i}}(x)$$
.

The Restricted State Constraint

We then can define two families of neighborhoods of optimal trajectories:

$$\mathcal{O}_{\eta} = \{ x \in (\Omega \setminus (\mathcal{K}_{\mathrm{src}} \cup \mathcal{K}_{\mathrm{dst}})) \mid \mathcal{F}_{\nu}(x) < \inf_{\nu \in \Omega} \mathcal{F}_{\nu}(y) + \eta \} .$$

 $\Gamma^{\delta} := \text{the set of } \delta - \text{geodesic points from } \mathcal{K}_{src} \text{ to } \mathcal{K}_{dst}.$

Proposition

For every $0 < \delta < \eta$, and $\delta' > 0$, we have: $\Gamma^* \subseteq \Gamma^{\delta} \subseteq \overline{\mathcal{O}}_{\eta} \subseteq \Gamma^{\eta + \delta'}$.

Denote v_{s}^{η} , v_{t}^{η} the value function of the problem in \mathcal{O}_{η} instead of Ω , then:

Theorem

 $\text{For every } \delta < \eta \text{, and } x \in \Gamma^\delta : v_{\mathrm{s} \div}^\eta(x) = v_{\mathrm{s} \div}(x), \qquad v_{\div \mathrm{t}}^\eta(x) = v_{\to \mathrm{t}}(x) \ .$

The Restricted State Constraint

We then can define two families of neighborhoods of optimal trajectories:

$$\mathcal{O}_{\eta} = \{ x \in (\Omega \setminus (\mathcal{K}_{\mathrm{src}} \cup \mathcal{K}_{\mathrm{dst}})) \mid \mathcal{F}_{\nu}(x) < \inf_{\nu \in \Omega} \mathcal{F}_{\nu}(y) + \eta \} .$$

 $\Gamma^{\delta} := \text{the set of } \delta - \text{geodesic points from } \mathcal{K}_{src} \text{ to } \mathcal{K}_{dst}.$

Proposition

For every $0 < \delta < \eta$, and $\delta' > 0$, we have: $\Gamma^* \subseteq \Gamma^{\delta} \subseteq \overline{\mathcal{O}}_{\eta} \subseteq \Gamma^{\eta + \delta'}$.

Denote v_{s}^{η} , v_{t}^{η} the value function of the problem in \mathcal{O}_{η} instead of Ω , then:

Theorem

 $\text{For every } \delta < \eta, \text{ and } x \in \Gamma^{\delta} : \textit{v}^{\eta}_{\mathsf{s}^{\flat}}(x) = \textit{v}_{\mathsf{s}^{\flat}}(x), \qquad \textit{v}^{\eta}_{\mathsf{\flat}\mathsf{t}}(x) = \textit{v}_{\mathsf{\flat}\mathsf{t}}(x) \ .$

Moreover, v_{i}^{η} is solution of

$$\begin{cases} F(x, v, Dv(x)) = 0, & x \in \mathcal{O}_{\eta}, \\ F(x, v(x), Dv(x)) \ge 0, & x \in \partial \mathcal{O}_{\eta} \setminus \mathcal{K}_{dst}, \\ v(x) = 0, & x \in \partial \mathcal{O}_{\eta} \cap \partial \mathcal{K}_{dst}. \end{cases}$$
(HJ ^{η})

Idea of The Multilevel Algorithm

- Solve the (HJ_s) and (HJ_t) in COARSE-GRID.
- Approximate O_η using the approximate value function: $V_{\mathrm{s}^{\Rightarrow}}, V_{^{
 m >t}}$.
- Build FINE-GRID in \mathcal{O}_{η} only, solve (HJ_{s}^{η}) , (HJ_{t}^{η}) in FINE-GRID.
- Repeat from level to level ...

Idea of The Multilevel Algorithm

- Solve the (HJ_s) and (HJ_t) in COARSE-GRID.
- Approximate O_η using the approximate value function: $V_{\mathrm{s}^{\Rightarrow}}, V_{^{
 m >t}}$.
- Build FINE-GRID in \mathcal{O}_{η} only, solve (HJ_s^{η}) , (HJ_t^{η}) in FINE-GRID.
- Repeat from level to level ...

And we associate this idea with Fast Marching Algorithm.

The Fast Marching Method

- An efficient **single-pass** method to solve stationary HJ PDEs.
- Need a full discretization (finite differences, semi-Lagrangian scheme,...) in the form of the fixed point equation of an *update operator* U: v = U(v).
- The nodes are divided by FAR, ACCEPTED , NARROWBAND .
- At each step, one node *x* from NARROWBAND with minimum value *v*(*x*) will be added to ACCEPTED, and the NARROWBAND will be updated.
- The computational complexity is $O(M \log M)$, with M = number of nodes.
- Partial Fast Marching stops once ACCEPTED contains the points of interest (K_{dst} or K_{src}).

Two Level Fast Marching Method (2LFM)

- In coarse grid:
 - i. Do a two direction partial fast marching in the grid $X^H \longrightarrow V^H_{s \rightarrow}$ and $V^H_{\rightarrow t}$.
 - ii. Select *Active* nodes based on the two approximate value functions, and store them $\longrightarrow O_{\eta}^{H} := \{x \in X^{H} \mid \mathcal{F}_{V^{H}}(x) \leq \min_{x^{H} \in X^{H}} (\mathcal{F}_{V^{H}}(x^{H})) + \eta_{H}\}$.
- In fine grid:
 - i. Construct fine grid nodes based on Active set $O_{\eta}^{H} \longrightarrow O_{\eta}^{H}$
 - $G^h_{\eta} = \big\{ x \in X^h \mid \exists x^H \in O^H_{\eta} : \|x x^H\| \leq max((H h), h) \big\}.$
 - ii. Do fast marching starting from one direction in fine grid nodes only $\longrightarrow V_{s}^{h,2}$ or $V_{\rightarrow t}^{h,2}$.

2LFM: Proof of Correctness

link the fine and coarse grids as follows:

- Extend the approximate solutions from X^H to Ω by linear interpolation $\longrightarrow V_{s}^{H,I}$ or $V_{s}^{H,I}$.
- Define

 $\mathcal{O}^{\mathcal{H},l}_\eta = \{x \in (\Omega \setminus (\mathcal{K}_{
m src} \cup \mathcal{K}_{
m dst})) \mid \mathcal{F}_{V^{\mathcal{H},l}}(x) \leq \min_{x^{\mathcal{H}} \in X^{\mathcal{H}}} \mathcal{F}_{V^{\mathcal{H}}}(x^{\mathcal{H}}) + \eta_{\mathcal{H}} \mid \geq \mathcal{O}^{\mathcal{H}}_\eta \, .$

Theorem

Assume $\|v_{s^{\Rightarrow}}^{h} - v_{s^{\Rightarrow}}\| \leq Ch^{\gamma}$.

There exists a constant $C \ge 0$ such that for every $\eta_H \ge CH^{\gamma}$, $\overline{O}_{\eta}^{H,l}$ contains the optimal trajectories Γ^* of the continuous problem.

Applying the results in continuous time and space, we obtain:

Theorem

There exist $\delta < \eta_H$ such that, for every $x \in G_{\eta}^h \cap \Gamma_{\delta}$, $V_{s}^{h,2}(x) = V_{s}^h(x)$.

- The above algorithm can be extended to multi-level case.
- The parameter: H_l, η_l for every $l \in \{1, 2, ..., N\}$
- The fine grid in current level will be the coarse grid in next level.
- Same analysis in each level: proof of correctness.

Data Storage

- · For the algorithm to be efficient, we need to avoid storing full grids.
- We use a hash table, which has space complexity O(M), and computational complexity O(1) for:
 - · Checking if one node already exists in the grid;
 - · If not, insert this new node into the existing grid;
 - After the grid has been constructed, checking neighborhood's information for each node.
- Point ⇒(Hash Function)⇒Pointer⇒Point+Value Function+...

Analysis of Computational Complexity (2 Level Case)

Given the mesh step *h* of fine grid, two parameters need to be chosen:

- i. The mesh step of the coarse grid *H*.
- ii. The parameter η_H to select the active nodes in coarse grid.

Space Complexity

Assume there exists a finite number of optimal trajectories, that the distance between Γ^* and \mathcal{O}_{η} is in the order of η^{β} , and $\eta_H \ge C_{\gamma} H^{\gamma}$. Then, the space complexity of 2LFM is:

$$\mathcal{C}_{spa}(H,h) = \widetilde{O} \Big(C^d \Big(rac{1}{H^d} + rac{(\eta_H)^{eta(d-1)}}{h^d} \Big) \Big) \; ,$$

where C depends in particular on the Euclidean distance D between \mathcal{K}_{src} and $\mathcal{K}_{dst}.$

For semilagrangian schemes, the same estimation holds for time complexity. One can obtain by induction a similar result for several levels, and then optimize the mesh steps.

Theorem (Space or time computational complexity)

Assume $d \ge 2$, and let $\nu := \gamma \beta (1 - \frac{1}{d}) < 1$. Let $\varepsilon > 0$, and choose $h = (C_{\gamma}^{-1}\varepsilon)^{\frac{1}{\gamma}}$. Then, in order to obtain an error bound on the value of the minimum time problem $\le \varepsilon$, one can use one of the following methods:

- 1. 2LFM (two-level fast marching method) with $\eta_H = CH^{\gamma}$, and $H = h^{\frac{1}{\nu+1}}$. Then, the computational complexity is $\widetilde{O}(C^d(\frac{1}{\epsilon})^{\frac{d}{\gamma(1+\nu)}})$.
- The N-level MLFM (fast marching method) with η_l = CH_l^γ and H_l = h^{1-ν/l}/_{1-ν^N}. Then, the computational complexity is Õ(NC^d(1/ε))^{1-ν/N/γ}).
 The N-level MLFM with N = ⌊d/γ log(1/ε)⌋, and η_l = CH_l^γ and H_l = h^{1/N}. Then, the computational complexity is Õ(C^d(1/ε))^{(1-ν)/q}).

When $\gamma = \beta = 1$, it reduces to $\widetilde{O}(C^{d}\frac{1}{\epsilon})$.

- The computational complexity of Fast Marching is $\tilde{O}(C^d(\frac{1}{\epsilon})^{\frac{d}{\gamma}})$.
- $\gamma = 1/2$ in general and $\gamma = 1$ when *f*, $v_{rac{>}t}$ and $v_{sac{>}t}$ are semi-concave.
- $\beta = 1/2$ for C^2 value functions but $\beta = 1$ for some Lipschitz cases.

- FM and MLFM are implemented in C++, and executed on a single core of a Quad Core IntelCore I7 at 2.3Gh with 16Gb of RAM, and will be on gitlab.inria.fr soon.
- They have been tested on several minimum time problems. An easy problem with $f \equiv 1$ (Problem 1), a problem with discontinuous speed (Problem 2), a Poincaré Model (Problem 3), a problem for which $\beta = 1$ (Problem 4),... See arXiv:2303.10705.
- Up to dimension 6 for MLFM.

Figure 1: CPU time and memory allocation as a function of the dimension, for a fixed finest mesh step *h*.

Figure 2: CPU time and memory allocation for several values of the finest mesh step *h*, in dimension 3.

Figure 3: Growth of CPU time w.r.t. mesh steps in dimension 4.

Several other cases to show how the algorithm works

Optimal trajectories with obstacles:

Poincare Disk:

Conclusion and Perspectives

- New numerical method using *multilevel discretizations* and a characterization of optimal trajectories based on two directions value functions.
- Time and space *complexity* to obtain an ε -error is reduced to $\widetilde{O}(\varepsilon^{-\frac{(1-\nu)d}{\gamma}})$, $\nu := \gamma\beta(1-\frac{1}{d})$, compared with $\widetilde{O}(\varepsilon^{-\frac{d}{\gamma}})$ for ordinary grid-based methods.
- When γ = β = 1 (for instance for a semi-concave value function which is stiff around optimal trajectories), this complexity becomes in O(ε⁻¹).
- *Numerical experiments* have been done up to dimension 7 on a laptop.
- Finite horizon deterministic control problems and tropical numerical methods (arxiv:2304.10342, will be presented at IFAC 2023 by Shanqing Liu).
- · Infinite horizon discounted problems with value iteration?
- The method need to guess the constants (γ, β and C in η_H = CH^γ) or to tune the parameters H_I and η_I. Adaptive construction ?
- Extension to stochastic control problems ?