
A multi-level fast-marching method for the
minimum time problem

Marianne Akian(1), Stéphane Gaubert(1), Shanqing LIU(2)

(1) Inria and CMAP, École polytechnique CNRS, IP Paris
Marianne.Akian@inria.fr, Stephane.Gaubert@inria.fr

(2) CMAP, École polytechnique CNRS, IP Paris and Inria
Shanqing.Liu@polytechnique.edu.

See arXiv:2303.10705

SMAI 2023, Le Gosier, Guadeloupe, 22-26 mai 2023

The Minimum Time Problem

Consider the minimum time optimal control problem:

τ∗ = inf τ

s.t .


ẏ(t) = f (y(t), α(t))α(t), ∀t ∈ [0, τ],

y(0) ∈ Ksrc, y(τ) ∈ Kdst,

y(t) ∈ Ω ⊂ Rd ∀t ∈ [0, τ] ,

α ∈ A = {α : R+ → S1 : α is measurable} .

It can be solved using Eikonal equation:

min
α∈S1

{(∇T (x) · α)f (x , α)} = 1 ,

or after the change of variable v∗ = 1− e−τ
∗
, the stationary Hamilton-Jacobi

Equation:

F (x , v ,Dv) = 0 with F (x , r ,p) := − min
α∈S1

{p · f (x , α)α + 1− r} .

The Minimum Time Problem

Consider the minimum time optimal control problem:

τ∗ = inf τ

s.t .


ẏ(t) = f (y(t), α(t))α(t), ∀t ∈ [0, τ],

y(0) ∈ Ksrc, y(τ) ∈ Kdst,

y(t) ∈ Ω ⊂ Rd ∀t ∈ [0, τ] ,

α ∈ A = {α : R+ → S1 : α is measurable} .

It can be solved using Eikonal equation:

min
α∈S1

{(∇T (x) · α)f (x , α)} = 1 ,

or after the change of variable v∗ = 1− e−τ
∗
, the stationary Hamilton-Jacobi

Equation:

F (x , v ,Dv) = 0 with F (x , r ,p) := − min
α∈S1

{p · f (x , α)α + 1− r} .

Numerical solution of Hamilton-Jacobi Equations

There are 2 difficulties:

• Standard grid based space discretizations suffer from the curse of
dimensionality:
for an error of ε, the storage and time complexities of finite difference, finite
element or semi-Lagrangian methods is at least in the order of (1/ε)d/2.

• For a stationary equation, one may need to do a number of value
iterations in the order of 1/ε.

Numerical solution of Hamilton-Jacobi equations: previous
improvements

• For eikonal equations: Fast Marching Method introduced by Tsitsiklis (95)
Sethian (96) is a “single pass” method.

• Recent developments: Sethian, Vladimirsky, OUMs(03), Cristiani, Falcone,
SL-FM (07), Cristiani, BFM(09), Mirebeau, Riemannian FM (18).

• Computational complexity: O(M log M), where M is the number of
discretization points. Feasible only in low dimension.

• Optimization along one or few “optimal” trajectories: Necessary conditions
(Pontryagin principle); Direct optimization methods; Stochastic Dual
Dynamic Programming method (SDDP) Pereira and Pinto (1991), Shapiro
(2011),... for linear-convex problems, DP algorithm on a tree-structure Alla,
Falcone, Saluzzi (2019) using Lipschitz continuity; Point based methods for
Partially Observable Markov Decision Processes (POMDP) Pineau et al
(2003), Kurniawati, Hsu, Lee (2008),...

• tropical/max-plus/idempotent methods: McEneaney (2007), Dower, Zhang
(2015), Zheng Qu (2014),...

Idea of Multi-level Fast marching method

• The Fast Marching Method is a variant of the Dijkstra’s Algorithm, which
solves the shortest path problem in discrete time.

• Highway Hierarchies (Sanders, Schulte 12), accelerate the Dijkstra’s
algorithm (≈3000 times faster) in finding the shortest path between two
given points.

• They construct coarse grids, like in the Algebraic Multigrid Method.
• For continuous minimum time problems, we shall use rather the ideas of

the Full Geometric Multigrid Method, and Highways will be optimal
trajectories on coarse grids.

(a) Fast Marching (b) Highway Hierarchies
=⇒

(c) ML Fast Marching

The Minimum Time Problem

Consider the minimum time optimal control problem:

τ∗ = inf τ

s.t .


ẏ(t) = f (y(t), α(t))α(t), ∀t ∈ [0, τ],

y(0) ∈ Ksrc, y(τ) ∈ Kdst,

y(t) ∈ Ω ⊂ Rd ∀t ∈ [0, τ] ,

α ∈ A = {α : R+ → S1 : α is measurable} .

and v∗ = 1− e−τ
∗
,

where

• Ω ⊂ Rd is compact, ∂Ω is C2;
• Ksrc,Kdst ⊂ Ω closed;
• the speed f > 0 is continuous, Lipschitz continuous w .r .t x and α, and
∀x ∈ ∂Ω, α ∈ S1:

f (x , α)α · n(x) ≤ −C < 0.

Characterization of value function –”To Destination”

v∗ = inf
x∈Ksrc

v)t(x) , v)t(x) := inf
α∈AΩ,x

inf
τ

{∫ τ

0
e−tdt | yα(x ; τ) ∈ Kdst

}
,

where yα(x ; t) denote the solution of{
ẏ(t) = f (y(t), α(t))α(t), ∀t ≥ 0 ,

y(0) = x .

and
AΩ,x := {α ∈ A | yα(x ; s) ∈ Ω, for all s ≥ 0} .

State constrained HJ Equation (in the viscosity sense, Soner) :
F (x , v)t(x),Dv)t(x)) = 0, x ∈ Ω \ Kdst,

F (x , v)t(x),Dv)t(x)) ≥ 0, x ∈ ∂Ω,

v)t(x) = 0, x ∈ Kdst;

(HJt)

where F (x , r ,p) := −minα∈S1{p · f (x , α)α + 1− r .

Characterization of value function –”From Source”

v∗ = inf
x∈Kdst

vs)(x) , vs)(x) := inf
α̃∈ÃΩ,x

inf
τ

{∫ τ

0
e−tdt | ỹα̃(x ; τ) ∈ Ksrc

}
,

where ỹα̃(x ; t) denote the solution of{
˙̃y(t) = −f (ỹ(t), α̃(t))α̃(t), ∀t ≥ 0 ,

ỹ(0) = x .

and
ÃΩ,x = {α̃ ∈ A | ỹα̃(x ; s) ∈ Ω, for all s ≥ 0}.

State constrained HJ equation (in the viscosity sense, Soner) :
F (x , vs)(x),−Dvs)(x)) = 0, x ∈ Ω \ Ksrc,

F (x , vs)(x),−Dvs)(x)) ≥ 0, x ∈ ∂Ω,

vs)(x) = 0, x ∈ Ksrc;

(HJs)

where F (x , r ,p) := −minα∈S1{p · f (x , α)α + 1− r .

The Optimal Trajectories

Denote the set of optimal points in Ksrc, Kdst:

Xsrc = Argminx∈Ksrc
v)t(x), Xdst = Argminx∈Kdst

vs)(x) .

Denote Γ∗x , Γ̃∗x the set of geodesic points (points of optimal trajectories) for the
two directions’ problems.

Proposition

∪x∈Xsrc{Γ∗x} = ∪x∈Xdst{Γ̃∗x} := Γ∗, geodesic points from Ksrc to Kdst.

inf
x∈Ksrc

v)t(x) = inf
x∈Kdst

vs)(x) := v∗

≤ Fv (x) := {vs)(x) + v)t(x)− vs)(x)v)t(x)} .

Fv (x) = v∗ ⇔ x ∈ Γ∗.

The above formula is similar to:

τ∗ ≤ Ts)(x) + T)t(x) .

The Restricted State Constraint

We then can define two families of neighborhoods of optimal trajectories:

Oη = {x ∈ (Ω \ (Ksrc ∪ Kdst)) | Fv (x) < inf
y∈Ω
Fv (y) + η } .

Γδ := the set of δ−geodesic points from Ksrc to Kdst.

Proposition

For every 0 < δ < η, and δ
′
> 0, we have: Γ∗ ⊆ Γδ ⊆ Oη ⊆ Γη+δ

′

.

Denote vηs), vη)t the value function of the problem in Oη instead of Ω, then:

Theorem

For every δ < η, and x ∈ Γδ : vηs)(x) = vs)(x), vη)t(x) = v)t(x) .

Moreover, vη)t is solution of
F (x , v ,Dv(x)) = 0, x ∈ Oη,
F (x , v(x),Dv(x)) ≥ 0, x ∈ ∂Oη \ Kdst,

v(x) = 0, x ∈ ∂Oη ∩ ∂Kdst.

(HJηt)

The Restricted State Constraint

We then can define two families of neighborhoods of optimal trajectories:

Oη = {x ∈ (Ω \ (Ksrc ∪ Kdst)) | Fv (x) < inf
y∈Ω
Fv (y) + η } .

Γδ := the set of δ−geodesic points from Ksrc to Kdst.

Proposition

For every 0 < δ < η, and δ
′
> 0, we have: Γ∗ ⊆ Γδ ⊆ Oη ⊆ Γη+δ

′

.

Denote vηs), vη)t the value function of the problem in Oη instead of Ω, then:

Theorem

For every δ < η, and x ∈ Γδ : vηs)(x) = vs)(x), vη)t(x) = v)t(x) .

Moreover, vη)t is solution of
F (x , v ,Dv(x)) = 0, x ∈ Oη,
F (x , v(x),Dv(x)) ≥ 0, x ∈ ∂Oη \ Kdst,

v(x) = 0, x ∈ ∂Oη ∩ ∂Kdst.

(HJηt)

Idea of The Multilevel Algorithm

• Solve the (HJs) and (HJt) in COARSE-GRID.

• Approximate Oη using the approximate value function: Vs),V)t .

• Build FINE-GRID in Oη only, solve (HJηs), (HJηt) in FINE-GRID.

• Repeat from level to level ...

And we associate this idea with Fast Marching Algorithm.

Idea of The Multilevel Algorithm

• Solve the (HJs) and (HJt) in COARSE-GRID.

• Approximate Oη using the approximate value function: Vs),V)t .

• Build FINE-GRID in Oη only, solve (HJηs), (HJηt) in FINE-GRID.

• Repeat from level to level ...

And we associate this idea with Fast Marching Algorithm.

The Fast Marching Method

• An efficient single-pass method to solve stationary HJ PDEs.
• Need a full discretization (finite differences, semi-Lagrangian scheme,...)

in the form of the fixed point equation of an update operator U : v = U(v).
• The nodes are divided by FAR, ACCEPTED , NARROWBAND .
• At each step, one node x from NARROWBAND with minimum value v(x)

will be added to ACCEPTED , and the NARROWBAND will be updated.
• The computational complexity is O(M log M), with M = number of nodes.
• Partial Fast Marching stops once ACCEPTED contains the points of

interest (Kdst or Ksrc).

Two Level Fast Marching Method (2LFM)

• In coarse grid:
i. Do a two direction partial fast marching in the grid X H −→ V H

s) and V H
)t.

ii. Select Active nodes based on the two approximate value functions, and store
them −→ OH

η :=
{

x ∈ X H | FV H (x) ≤ minxH∈XH

(
FV H (xH)

)
+ ηH

}
.

• In fine grid:
i. Construct fine grid nodes based on Active set OH

η −→
Gh
η =

{
x ∈ X h | ∃xH ∈ OH

η : ‖x − xH‖ ≤ max((H − h), h)
}

.
ii. Do fast marching starting from one direction in fine grid nodes only −→

V h,2
s) or V h,2

)t .

(d) Level-0 (e) Active Nodes (f) Fine grid (g) Level-1

2LFM: Proof of Correctness

link the fine and coarse grids as follows:

• Extend the approximate solutions from X H to Ω by linear interpolation
−→ V H,I

s) or V H,I
)t .

• Define

OH,I
η = {x ∈ (Ω \ (Ksrc ∪ Kdst)) | FV H,I (x) ≤ min

xH∈X H
FV H (xH) + ηH } ⊃ OH

η .

Theorem

Assume ‖vh
s) − vs)‖ ≤ Chγ .

There exists a constant C ≥ 0 such that for every ηH ≥ CHγ , O
H,I
η contains

the optimal trajectories Γ∗ of the continuous problem.

Applying the results in continuous time and space, we obtain:

Theorem

There exist δ < ηH such that, for every x ∈ Gh
η ∩ Γδ, V h,2

s) (x) = V h
s)(x).

Multi-level Fast Marching Method (MLFM)

• The above algorithm can be extended to multi-level case.

• The parameter: Hl , ηl for every l ∈ {1,2, ...,N}
• The fine grid in current level will be the coarse grid in next level.

• Same analysis in each level: proof of correctness.

Data Storage

• For the algorithm to be efficient, we need to avoid storing full grids.
• We use a hash table, which has space complexity O(M) , and

computational complexity O(1) for:
• Checking if one node already exists in the grid;
• If not, insert this new node into the existing grid;
• After the grid has been constructed, checking neighborhood’s information for

each node.

• Point⇒(Hash Function)⇒Pointer=⇒Point+Value Function+...

Analysis of Computational Complexity (2 Level Case)

Given the mesh step h of fine grid, two parameters need to be chosen:

i. The mesh step of the coarse grid H.
ii. The parameter ηH to select the active nodes in coarse grid.

Space Complexity
Assume there exists a finite number of optimal trajectories, that the distance
between Γ∗ and Oη is in the order of ηβ , and ηH ≥ CγHγ . Then, the space
complexity of 2LFM is:

Cspa(H,h) = Õ
(

Cd
(1

Hd +
(ηH)β(d−1)

hd

))
,

where C depends in particular on the Euclidean distance D between Ksrc

and Kdst.

For semilagrangian schemes, the same estimation holds for time complexity.
One can obtain by induction a similar result for several levels, and then
optimize the mesh steps.

Theorem (Space or time computational complexity)

Assume d ≥ 2, and let ν := γβ(1− 1
d) < 1. Let ε > 0, and choose

h = (C−1
γ ε)

1
γ . Then, in order to obtain an error bound on the value of the

minimum time problem ≤ ε, one can use one of the following methods:

1. 2LFM (two-level fast marching method) with ηH = CHγ , and H = h
1
ν+1 .

Then, the computational complexity is Õ(Cd (1
ε)

d
γ(1+ν)).

2. The N−level MLFM (fast marching method) with ηl = CHγ
l and

Hl = h
1−ν l

1−νN . Then, the computational complexity is Õ(NCd (1
ε)

1−ν
1−νN

d
γ).

3. The N−level MLFM with N = b d
γ log(1

ε)c, and ηl = CHγ
l and Hl = h

l
N .

Then, the computational complexity is Õ(Cd (1
ε)(1−ν) d

γ).
When γ = β = 1, it reduces to Õ(Cd 1

ε).

• The computational complexity of Fast Marching is Õ(Cd (1
ε)

d
γ).

• γ = 1/2 in general and γ = 1 when f , v)t and vs) are semi-concave.
• β = 1/2 for C2 value functions but β = 1 for some Lipschitz cases.

Some Numerical Results

• FM and MLFM are implemented in C++, and executed on a single core of
a Quad Core IntelCore I7 at 2.3Gh with 16Gb of RAM, and will be on
gitlab.inria.fr soon.

• They have been tested on several minimum time problems. An easy
problem with f ≡ 1 (Problem 1), a problem with discontinuous speed
(Problem 2), a Poincaré Model (Problem 3), a problem for which β = 1
(Problem 4),... See arXiv:2303.10705.

• Up to dimension 6 for MLFM.

(h) CPU time (i) Memory allocation

Figure 1: CPU time and memory allocation as a function of the dimension, for a fixed
finest mesh step h.

(a) CPU time (b) Memory allocation

Figure 2: CPU time and memory allocation for several values of the finest mesh step h,
in dimension 3.

(a) Linear scale. (b) Log-log scale.

Figure 3: Growth of CPU time w.r.t. mesh steps in dimension 4.

Several other cases to show how the algorithm works

Optimal trajectories with obstacles:

(a) Classical F.M. (b) Level-1 (c) Level-2

Poincare Disk:

(d) Classical F.M. (e) Level-1 (f) Level-2

Conclusion and Perspectives

• New numerical method using multilevel discretizations and a
characterization of optimal trajectories based on two directions value
functions.

• Time and space complexity to obtain an ε-error is reduced to Õ(ε−
(1−ν)d
γ),

ν := γβ(1− 1
d), compared with Õ(ε−

d
γ) for ordinary grid-based methods.

• When γ = β = 1 (for instance for a semi-concave value function which is
stiff around optimal trajectories), this complexity becomes in Õ(ε−1).

• Numerical experiments have been done up to dimension 7 on a laptop.

• Finite horizon deterministic control problems and tropical numerical
methods (arxiv:2304.10342, will be presented at IFAC 2023 by Shanqing Liu).

• Infinite horizon discounted problems with value iteration?
• The method need to guess the constants (γ, β and C in ηH = CHγ) or to

tune the parameters Hl and ηl . Adaptive construction ?
• Extension to stochastic control problems ?

