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Hazard rate in survival analysis

Survival analysis is a collection of statistical procedures employed on
time-to-event data.

The major limitation of time-to event-data is the possibility of
incomplete data : censored observations. (Kaplan, 1958 ; Meier, 1958 ;
Cox, 1972).

The main objectives of survival analysis include :
- analysis of patterns of time-to-event data
- comparing survival curves (between different groups)
- assessing the relationship between explanatory variables and survival
time.
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Hazard rate in survival analysis

Hazard rate in survival analysis

Let X be a lifetime of interest, a nonnegative random variable with density
f w.r.t the Lebesgue measure, and with cumulative distribution function F
and survival function S = 1− F .

The hazard rate function (also called instantaneous failure rate) is a
good way to model data distribution in survival analysis.

The hazard rate function λ is defined by :

λ(x) = lim
∆→0

1

∆
P (x < X ≤ x + ∆|X > x)

= lim
∆→0

1

∆

F (x + ∆)− F (x)

S(x)
=

f (x)

S(x)
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Hazard rate in survival analysis

Different shapes for the hazard rate

λ(x) = lim
∆→0

1

∆
P (x < X ≤ x + ∆|X > x) =

f (x)

S(x)
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Definition of the estimator The statistical model

Aim : nonparametric estimation of the hazard rate function λ = f /S in the
presence of right-censored observations.

Consider the model where, instead of X1, · · · ,Xn, the observations are

Zi = Xi ∧ Ci , δi = 1{Xi≤Ci},
where the sequences (Xi )i and (Ci )i are

two independent sequences of i.i.d.

nonnegative absolutely continuous random

variables. The Zi ’s are called

right-censored observations, and the δi ’s

are non-censoring indicators.

× indicates the event occurs before the

end-study Z2 = X2 and δ2 = 1

◦ the event has not been observed : it is

right censored Z3 = C3 and δ3 = 0
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Definition of the estimator The statistical model

Aim : nonparametric estimation of the hazard rate function λ = f /S in the
presence of right-censored observations.

The hazard rate function λ = f /S of the lifetime X is the function of
interest.
But X1, · · · ,Xn are not completely observed
Instead, we observe (Z1, δ1), · · · , (Zn, δn) with Zi = Xi ∧ Ci and
δi = 1{Xi≤Ci} :

(Xi ) and (Ci ) are independent sequences of i.i.d. nonnegative and
absolutely continuous random variables.

(Zi ) i.i.d. with survival function SZ

(Ci ) i.i.d. with survival function SC

We need to find a strategy to recover λ from the observations (Zi , δi )1≤i≤n
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Definition of the estimator The statistical model

We need to find a strategy to recover λ = f
S from the observations

(Zi , δi )1≤i≤n.

Classical nonparametric strategies are of two types :

Quotient estimator : very popular for kernel methods in general
regression estimation. (Nadaraya, 1964 ; Watson, 1964 and Müller &
al. 1994, Bouezmarni & al. , 2011, Barbeito & Cao, 2018 ; Brunel &
Comte, 2005).

Direct estimator : Least squares contrast minimization. (Barron,
Birgé, Massart, 1999 ; Baraud, 2002 for general regression setting,
Plancade, 2011 ; Comte & al, 2011 ; Brunel & Comte, 2021 for
specific hazard rate setting)

We focus on hazard rate estimation by the least squares projection method.

How is it possible to handle the case of non compact supported bases ?
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Definition of the estimator The statistical model

What is the interest of non compactly supported bases ?

The estimation set and the support of the bases in projection
methods are usually considered as fixed in the theoretical study.

But, in practice you have to adjust the support to the data : so that
the support becomes random !

With a non compact support, you don’t need to fix the estimation
support in advance.
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Definition of the estimator Least squares projection estimator

Let s, t : A 7→ R be two square integrable functions from A ⊆ R+ into R
The following criterion is called a contrast and

γn(t) := ‖t‖2
n − 2

n

∑n
i=1 δi t(Zi ),

where the empirical inner product and its associated empirical squared
norm are defined by

〈s, t〉n :=
1

n

n∑
i=1

∫
s(x)t(x)1{Zi>x}dx , ‖t‖2

n :=
1

n

n∑
i=1

∫
t2(x)1{Zi>x}dx .

=

∫
s(x)t(x)Ŝn,Z (x)dx =

∫
t2(x)Ŝn,Z (x)dx

with Ŝn,Z (x) = 1
n

∑n
i=1 1{Zi>x} the empirical survival function of Z
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Definition of the estimator Least squares projection estimator

Why is the contrast γn(t) related to our hazard rate estimation problem ?

E(γn(t)) = E

(
‖t‖2

n −
2

n

n∑
i=1

δi t(Zi )

)

=
1

n

n∑
i=1

E
(∫

t2(x)1{Zi>x}dx

)
− 2

n

n∑
i=1

E(δi t(Zi ))

E
(∫

t2(x)1{Zi>x}dx
)

=
∫

t2(x)SZ (x)dx = ‖t‖2
SZ

E(δi t(Zi )) = E(1{Xi≤Ci}t(Xi )) =
∫

t(x)SC (x)f (x)dx =
∫

t(x)SZ (x) f (x)
S(x) dx .

(as SZ = SCS)

Therefore, we find that

E(γn(t)) = ‖t‖2
SZ
− 2

∫
t(x)λ(x)SZ (x)dx
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Definition of the estimator Least squares projection estimator

Why is the contrast γn(t) related to our hazard rate estimation problem ?

E(γn(t)) = ‖t‖2
SZ
− 2

∫
t(x)λ(x)SZ (x)dx

Thus, we can write,

E(γn(t)) = ‖t‖2
SZ
− 2〈t, λ〉SZ = ‖t − λ‖2

SZ
− ‖λ‖2

SZ

Thus, minimizing γn for large n (by the Law of Large Numbers), should
provide a function t minimizing

∫
(t(x)− λ(x))2SZ (x)dx .

Therefore, we should estimate the L2 orthogonal projection of λ with
respect to the SZ -weighted inner product on a subspace Sm of functions
over which the minimization is performed.
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Definition of the estimator Least squares projection estimator

Three norms are involved in the estimation problem and must be
compared.
For a given square integrable function t defined on A,

the integral L2(A, dx) norm ‖t‖2 =
∫

t2(x)dx associated to the basis.

the empirical norm ‖t‖2
n = 1

n

∑n
i=1

∫
t2(x)1{Zi>x}dx involved in the

definition of the least squares contrast

and its expectation corresponding to a weighted L2(A,SZ (x)dx) norm

‖t‖2
SZ

=

∫
t2(x)SZ (x)dx

In previous works : Only compactly supported bases have been
considered : easier to deal with !
↪→ New insight with a work by Cohen, Davenport, Leviatan (2013,
2019) on the stability of Least Squares approximations.
↪→ New way of dealing with regression estimators (Comte &
Genon-Catalot, 2020) and hazard rate estimation (Brunel & Comte,
2021).
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Definition of the estimator Least squares projection estimator

Let A ⊆ R+ and let (ϕj , j = 0, · · · ,m − 1) be an orthonormal system of
functions supported on A belonging to L2(A, dx), i.e. such that

〈ϕj , ϕk〉 = δj ,k , 0 ≤ j , k ≤ m − 1.

We define Sm = span(ϕ0, · · · , ϕm−1). Thus, dim(Sm) = m.

Now, our projection estimator λ̂m of the hazard rate λ is defined by :

λ̂m := arg min
t∈Sm

γn(t).

with

γn(t) = ‖t‖2
n −

2

n

n∑
i=1

δi t(Zi ),
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Definition of the estimator Least squares projection estimator

Standard algebra gives, for t =
∑m−1

j=0 ajϕj ∈ Sm,

∇γn(a0, · · · , am−1) = 2Ψ̂m,Z~a
(m) − 2

n
Φ̂>m

~δ, with ~a(m) =

 a0
...

am−1


with Ψ̂m,Z := (〈ϕj , ϕk〉n)0≤j ,k≤m−1 =

(∫
ϕj(x)ϕk(x)ŜZ ,n(x)dx

)
0≤j ,k≤m−1

Φ̂m = (ϕj(Zi ))1≤i≤n,0≤j≤m−1 and ~δ = (δ1, · · · δn)>

Provided that Ψ̂m,Z is a. s. invertible,

λ̂m =
m−1∑
j=0

âjϕj with ~̂a(m) =

 â0
...

âm−1

 =
1

n
Ψ̂−1

m,Z Φ̂>m
~δ
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Definition of the estimator Least squares projection estimator

Provided that Ψ̂m,Z is a. s. invertible,

λ̂m =
m−1∑
j=0

âjϕj with ~̂a(m) =

 â0
...

âm−1

 =
1

n
Ψ̂−1

m,Z Φ̂>m
~δ

and we need to define the trimmed estimator :

λ̃m =

{
λ̂m if ‖Ψ̂−1

m,Z‖op ≤ c
n

ln n
0 otherwise

where ‖Ψ̂−1
m,Z‖op = +∞ if Ψ̂m,Z is not invertible and c is a constant

defined further.
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Bounds for the empirical and integrated risk

Consider a general context where the estimation support A is such that :
A ⊆ R+ and ∫

A
λ2(x)SZ (x)dx < +∞.

This condition is fulfilled for most classical models in survival analysis.
Indeed as SZ ≤ S , the condition holds if the distribution of X is such that∫
A λ

2S < +∞.
Examples of survival models satisfying

∫
R+ λ

2S < +∞.

(E.1) Exponential model, λ(x) = θ 1{x≥0}, S(x) = exp(−θx)1{x≥0}, θ > 0.

(E.2) Weibull model, λ(x) = αθαxα−11{x≥0}, S(x) = exp(−(θx)α)1{x≥0}, α >
1
2
, θ > 0

(E.3) Gamma model, f (x) = θνxν−1e−θx/Γ(ν)1{x≥0}, ν >
1
2
, θ > 0,

(E.4) Gompertz–Makeham, λ(x) = γ0 + γ1eγ2x , S(x) = e−γ0x−(γ2/γ1)(eγ2x−1)1{x≥0}, for
real numbers γ0, γ1, γ2 > 0,

(E.5) Log-logistic, λ(x) = θνxν−1(1 + θxν)−11{x≥0}, ν >
1
2
, θ > 0,

S(x) = 1/(1 + θxν)1{x≥0},

(E.6) Log-normal λ(x) = (xσ)−1φ
(
σ−1(ln x − µ)

) [
1− Φ

(
σ−1(ln x − µ)

)]−1
1{x≥0},

where φ(x) and Φ(x) are respectively the density and the cumulative distribution
function of a standard Gaussian, µ ∈ R, σ > 0.
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Bounds for the empirical and integrated risk

First, We can prove a bound for the empirical risk : let us denote λA := λ1A

Proposition (Empirical Risk Bound)

H1.

∫
A

λ2(z)
√

SZ (z)dz < +∞.

H2. In addition, we assume that the basis (ϕj)0≤j≤m−1 is such that
L(m) := supx∈A

∑m−1
j=0 ϕ2

j (x) < +∞.

H3. The matrix Ψm,Z := (〈ϕj , ϕk〉SZ )0≤j,k≤m−1 is invertible and

‖Ψ−1
m,Z‖op ≤

c

2

n

ln n
, c =

3 ln 3
2
− 1

10
, ”stability condition” (Cohen & al, 2013, 2019)

Then, for any m such that L(m) ≤ n,

E
[
‖λ̃m − λA‖2

n

]
≤ inf

t∈Sm

‖t − λA‖2
SZ

+ 2
Tr(Ψ−1

m,ZΨm,λSZ )

n
+
C1

n
.

Bias↘ with m Variance ???

where C1 is a positive constant and Ψm,λSZ =
(∫
ϕj(x)ϕk(x)λ(x)SZ (x)dx

)
0≤j,k≤m−1

.
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Bounds for the empirical and integrated risk

Second, We can prove a bound for the integrated risk :

Proposition (Integrated Risk Bound)

Under Assumptions H1, H2 , H3 For any m such that L(m) ≤ n,

E
[
‖λ̃m − λA‖2

SZ

]
≤
(

1 + 8
c

log n

)
inf
t∈Sm

‖t − λA‖2
SZ

+ 2
Tr(Ψ−1

m,ZΨm,λSZ )

n
+
C1

n
.

where C1 is a positive constant and Ψm,λSZ =
(∫
ϕj(x)ϕk(x)λ(x)SZ (x)dx

)
0≤j,k≤m−1

.
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Bounds for the empirical and integrated risk

Now, we can prove the following (not obvious !) lemma :

Lemma

Let the collection (Sm) be nested (m ≤ m′ =⇒ Sm ⊂ Sm′), then
m 7→ Tr(Ψ−1

m,ZΨm,λSZ ) is increasing.

Therefore, both bounds lead to the same conclusion that a compromise
has to be found for the choice of m, making a trade-off between bias and
variance.

E
[
‖λ̃m − λA‖2

n

]
≤ inf

t∈Sm
‖t − λA‖2

SZ + 2
Tr(Ψ−1

m,ZΨm,λSZ )

n
+
C1

n
.

Bias↘ with m Variance↗ with m

E
[
‖λ̃m − λA‖2

SZ

]
≤

(
1 + 8

c

log n

)
inf
t∈Sm
‖t − λA‖2

SZ + 2
Tr(Ψ−1

m,ZΨm,λSZ )

n
+
C1

n
.

Bias↘ with m Variance↗ with m

Any condition on the estimation set A is required.
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Bounds for the empirical and integrated risk

Main ingredient for the proof of the empirical and integrated risk bounds :

Two sets are of interest :

Ωm =

{
∀t ∈ Sm,

∣∣∣∣∣ ‖t‖2
n

‖t‖2
SZ

− 1

∣∣∣∣∣ ≤ 1

2

}

Λm =

{
‖Ψ̂−1

m,Z‖op ≤ c
n

log(n)

}
The following Lemma provides preliminary results which are the main
ingredients to bound the empirical risk and the integrated risk of one
estimator.

Lemma

Under the assumptions H1., H2., H3, ,

P(Ωc
m) ≤ 2/n4 and P(Λc

m) ≤ 2/n4
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Bounds for the empirical and integrated risk Specific Compact case

Previous works with compactly supported bases

Assume that we want to estimate λA with A compact (Brunel & Comte,
2005 ; Reynaud-Bouret, 2006 ; Plancade, 2011 ; Comte & al. 2011).

trigonometric basis on A = [0, a] : ϕ0(x) = a−1/21[0,a](x),

ϕ2j−1(x) =
√

2/a cos(2πjx/a)1[0,a](x), ϕ2j(x) =
√

2/a sin(2πjx/a)1[0,a](x),
j ≥ m.

histogram basis on A = [0, a] , we set ϕj(x) =
√

ma1[ja/m,(j+1)a/m) for
j = 0, . . . ,m − 1.

general piecewise polynomials with given degree r , by rescaling Q0, . . . ,Qr ,
the Legendre basis on each sub-interval [ja/m, (j + 1)a/m), j = 0, . . . ,m− 1.

Condition H2.L(m) = supx∈A
∑m−1

j=0 ϕ2
j (x) < +∞ is satisfied for these

bases, and L(m) ≤ c2
ϕm, where c2

ϕ is a known constant depending on the
basis and not on m.
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Bounds for the empirical and integrated risk Specific Compact case

Previous works with compactly supported bases

Assume that we want to estimate λA with A compact (Brunel & Comte,
2005 ; Reynaud-Bouret, 2006 ; Plancade, 2011 ; Comte & al. 2011).

Instead of Assumption H1.

∫
A
λ2(z)

√
SZ (z)dz < +∞., it is assumed :

H1′. ∀x ∈ A, SZ (x) ≥ S0 > 0 and λ(x) ≤ ‖λA‖∞ < +∞

In the compact setting, H1′. =⇒ H1.

For A = R+, H1′. does not hold anymore.
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Bounds for the empirical and integrated risk Specific Compact case

Our results encompass previous ones :

Lemma

Let A be a compact set and consider a basis such that L(m) ≤ c2
ϕm. Under H1′,

condition H1, is fulfilled. Moreover,
(i) ‖Ψ−1

m,Z‖op ≤ 1/S0, ”stability condition” automatically fulfilled for sufficiently large n

(ii) 0 ≤ Tr(Ψ−1
m,ZΨm,λSZ ) ≤ m‖λA‖∞ explicit upper bound for the variance term

We can recover the previous variance bound :

Proposition (Plancade, 2011)

E[‖λ̃m − λA‖2
n] ≤ ‖λm − λA‖2 + 2‖λA‖∞

m

n
+
C1

n
,

where λm is the L2-orthogonal projection of λA on Sm.
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Bounds for the empirical and integrated risk Specific Compact case

Consequently, We can recover the standard optimal nonparametric proved
previously :

For a function λA in a class of functions of regularity α (Besov or Sobolev
classes), the choice m∗ = n1/(2α+1) will lead to the risk order
E[‖λ̃m∗ − λA‖2

n] . n−2α/(2α+1) usual optimal nonparametric rate (Hubber
& MacGibbon, 2004 ; Comte & al. 2011).
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Bounds for the empirical and integrated risk Non-compact bases

Non-compact bases

Example of the Laguerre basis on A = R+. Let us define :

Pj(x) =

j∑
k=0

(−1)k
(

j

k

)
xk

k!
, ϕj(x) =

√
2Pj(2x)e−x1x≥0, j ≥ 0.

The collection (ϕj)j≥0 is a complete orthonormal system on L2(R+), such
that ∀j ≥ 0,∀x ∈ R+, |ϕj(x)| ≤

√
2 (Abramowitz and Stegun ,1964).

↪→ Therefore L(m) =
∑m−1

j=0 ϕj(x)2 ≤ 2m and condition H2. is satisfied.

Other bases could be considered but with Laguerre basis the estimators are
general combination of Gamma-type distributions, particularly well-suited
in the context of survival models.
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Bounds for the empirical and integrated risk Non-compact bases

What is the order of the variance term in the non-compact setting ?

- Compact bases : explicit bound 0 ≤ Tr(Ψ−1
m,ZΨm,λSZ ) ≤ m‖λA‖∞

- Non-compact bases : the order of Tr(Ψ−1
m,ZΨm,λSZ ) is not obvious !

We can prove :

Lemma

If µ(R+ ∩ Supp(SZ )) > 0 where µ is Lebesgue measure and
Supp(SZ ) = {x ∈ R+,SZ (x) > 0} is the support of SZ , then Ψm,Z is
invertible. Moreover, there exists c? > 0 such that, for sufficiently large m,

‖Ψ−1
m,Z‖op ≥ c?

√
m.

Elodie Brunel (IMAG) SMAI 2023 30 / 38



Bounds for the empirical and integrated risk Non-compact bases

Evaluating the variance order on numerical examples

Note that if X ∼ E(β) i.e. f (x) = βe−βx1R+(x) and S(x) = e−βx1R+(x),
then λ(x) = β. Therefore Ψm,Z = β−1Ψm,λSZ and

Tr(Ψ−1
m,ZΨm,λSZ ) = βTr(Idm) = βm.
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Plots of m 7→ Tr(Ψ̂−1
m,Z

Ψ̂m,λSZ
) for m = 1, . . . , 20, from n = 10000 observations of X ∼ E(1/3) with no censoring, in blue.

In bold dotted red, the best approximating line y = â + b̂x , with â = −0.11, b̂ = 0.36 .
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Bounds for the empirical and integrated risk Non-compact bases

Evaluating the variance order on numerical examples

Conjecture : the variance can remain of order m/n in the non-compact
setting as well !

Tr(Ψ−1
m,ZΨm,λSZ ) is of order bm.

f (x) = 3/(1 + x)41x≥0 f (x) = xe−x2/21x≥0
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Plots of m 7→ Tr(Ψ̂−1
m,Z

Ψ̂m,λSZ
) for m = 1, . . . , 20, from n = 10000 observations with no censoring, in blue. In bold dotted

red, the best approximating line y = â + b̂x , with â = −0.11, b̂ = 0.36 (left) and â = −3.31, b̂ = 2.21 (right).
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Model selection and simulations
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Model selection and simulations

Now, let (Sm)m∈Mn be the theoretical collection of models with Mn defined by

Mn =
{

m ∈ {1, . . . , n}, ‖Ψ−1
m,Z‖op ≤

c

2

n

ln n

}
and its empirical version

M̂n =
{

m ∈ {1, . . . , n}, ‖Ψ̂−1
m,Z‖op ≤ c

n

ln n

}
.

Then we select

m̂ = arg min
m∈M̂n

(
γn(λ̂m) + p̂en(m)

)
, p̂en(m) = κ

Tr(Ψ̂−1
m,Z Ψ̂m,λSZ )

n
,

The penalty p̂en(m) is the empirical version of the variance order. The

penalized criterion is thus an empirical version of the squared bias / variance

decomposition.

The constant κ is numerical and depends on neither λ nor n ; We took

κ = 2 in numerical experiments.
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Model selection and simulations

Estimation of Ψm,λSZ in the penalty term

An important preliminary remark is that, as λSZ = fSC , the matrix Ψm,λSZ

can easily be estimated by

Ψ̂m,λSZ =

(
1

n

n∑
i=1

δiϕj(Zi )ϕk(Zi )

)
0≤j ,k≤m−1

.

E (δ1ϕj(Z1)ϕk(Z1)) = E
(
1(X1≤C1)ϕj(X1)ϕk(X1)

)
= E

(
E(1(X1≤C1)ϕj(X1)ϕk(X1)|X1)

)
= E (ϕj(X1)ϕk(X1)SC (X1))

=

∫
ϕj(x)ϕk(x)f (x)SC (x)dx = 〈ϕj , ϕk〉λSZ
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Model selection and simulations

Model selection : a real data example for breast-feeding lifetime (n = 927 women)
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Collection of estimators for n = 927 with 96% of non-censoring. cohort from the National Longitudinal Survey of Youth of the

U.S. Bureau of Labor Statistics
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Model selection and simulations

Comparison of the Mean Squared Error (MSE) over 200 replications with
previous Projection methods
(a) Gamma case. Xi ∼Gamma(ν, θ) with ν = 5 (shape) and θ = 1 (scale) and
Ci ∼ Exp(1/6).
(b) Bimodal case. The Xi ’s have a bimodal density defined by f = 0.8u + 0.2v where u
is the density of exp(Y /2) with Y ∼ N (0, 1) and v = 0.17Y + 2 and Ci ∼ Exp(2/5).

Method Gamma Bimodal

n 200 500 200 500

Wavelet 0.112 0.099 2.080 0.197
Antoniadis & et al (1999)

Histogram 0.055 0.057 1.259 1.122
Reynaud-Bouret (2004)

Fourier 0.086 0.090 0.902 0.706
Brunel & Comte (2005)

Laguerre basis 0.0275 0.0084 0.629 0.487

Comparison of the MSE with a Kernel estimator (non-compact setting)

Method Weibull χ2(2) χ2(3)

n 100 100 100

Kernel estimator 0.029 0.056 0.020
Barbeito & Cao (2019)

Laguerre basis 0.028 0.040 0.029
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Model selection and simulations

Merci de votre attention !
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