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Examples : Clouds, Diesel engines, Medical sprays, Nuclear industry, Pharmaceutical
industry
Thin sprays:

(a) Diesel engine fuel injector (b) Medical spray

Thick sprays:
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Sprays: Example



Unknowns for the gas

%(t, x) ≥ 0, u(t, x) ∈ R3, e(t, x) ≥ 0, α(t, x) ∈ (0, 1].

Follow a hyperbolic (compressible Euler equations) or Navier-Stokes equation.

Unknown for the dispersed phase : kinetic distribution function

f (t, x , v) ≥ 0

with v the velocity of the droplets.

Follow a Vlasov or Vlasov-Boltzmann (with collision operator) equation

Hypothesis. The particles are monodisperse: all particle have the same radius r? > 0.

Possibility to enrich the model with various effect: internal energy of the droplets,
compressibility, rotation of the droplets, inelastic collisions and breakup, chemical
reactions...
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Modeling of sprays: fluid-kinetic coupling



Euler equations coupled with a Vlasov equation through a friction force
∂t%+ ∇x · (%u) = 0

∂t(%u) + ∇x · (%u ⊗ u) + ∇xp = D?

∫
R3

(v − u)f dv

∂t f + v ·∇x f + ∇v · (Γf ) = 0

m?Γ = −D?(v − u)

with pressure p = %γ .
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A first example: Thin sprays α(t, x) ≈ 1



Compressible Vlasov-Euler equation. Coupling through a friction force and volume fraction.



∂t(α%) + ∇x · (α%u) = 0

∂t(α%u) + ∇x · (α%u ⊗ u) + α∇xp = D?

∫
R3

(v − u)f dv

∂t(α%e) + ∇x · (α%eu) + p(∂tα+ ∇x · (αu)) = D?

∫
R3
|v − u|2f dv

∂t f + v ·∇x f + ∇v · (Γf ) = 0

α = 1−
4

3
πr3
?

∫
R3

f dv

m?Γ = −
4

3
πr3
?∇xp − D?(v − u)

Our interest is in all regime 0 < α ≤ 1.

L. Boudin, L. Desvillettes, and R. Motte. A modeling of compressible droplets in a fluid. Commun. Math. Sci.,
1(4):657-669, 2003.
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Thick sprays : α(t, x) ∈ (0, 1]



The mass of each phase is preserved

∂t(α%) + ∇x · (α%u) = 0, ∂t f + ∇x · (v f ) + ∇v · (Γf ) = 0.

The total momentum is preserved

∂t

(
α%u +

4

3
πr3
?

∫
R3

f v dv

)
+ ∇x ·

(
α%u ⊗ u +

4

3
πr3
?

∫
R3

f v ⊗ v dv

)
+ ∇xp = 0.

The total energy is preserved

∂t

(
α%E +

4

3
πr3
?

∫
R3

f
|v |2

2
dv

)
+ ∇x · (α%uE +

4

3
πr3
?

∫
R3

f v
|v |2

2
dv

+αup +
4

3
πr3
?p

∫
R3

f v dv) = 0.

General thermodynamical principles are satisfied since one has

∂t(α%S) + ∇x · (α%Su) =
D?

T?

∫
R3
|v − u|2f dv ≥ 0.

The system rewrites as a system of conservation laws.
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Preliminary remarks



Models
in the context of combustion theory introduced in Williams [1985]
Classification of sprays O’Rourke [1981]

Mathematical theory of Thin Sprays (α ≈ 1):
Vlasov-Euler :

Local-in-time well posedness for strong solution Baranger and Desvillettes [2006], Mathiaud [2010]
Global weak solution in 1D with finite energy Cao [2022]

Vlasov-Navier-Stokes :

Global existence of weak solution on the 3D-torus Boudin, Desvillettes, Grandmont, and Moussa
[2009] and the inhomogenous case Choi and Kwon [2015]
Large time behavior studied in Choi [2016], Ertzbischoff, Han-Kwan, and Moussa [2021], Han-Kwan,
Moussa, and Moyano [2020]

Mathematical theory of Thick Sprays (0 < α ≤ 1) :
Boudin, Desvillettes, and Motte [2003].
Recent numerical work Benjelloun, Desvillettes, Ghidaglia, and Nielsen [2012]
Linear stability studied in Buet, Després, and Desvillettes [2023]
Local Well-posedness for regularized model Buet, Després, and F [2022]
Very recently, Local in time Well-posedness for the Navier Stokes (with diffusion) case and
Penrose stable initial data Ertzbischoff and Han-Kwan [2023]
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∂t(α%) + ∇x · (α%u) = 0

∂t(α%u) + ∇x · (α%u ⊗ u) + α∇xp = D?

∫
R3

(v − u)f dv

∂t(α%e) + ∇x · (α%eu) + p(∂tα + ∇x · (αu)) = D?

∫
R3
|v − u|2f dv

∂t f + v ·∇x f + ∇v · (Γf ) = 0

α = 1−
4

3
πr3

?

∫
R3

f dv

m?Γ = −
4

3
πr3

?∇xp − D?(v − u)

Theory

No Cauchy theory available: Loss of regularity in the equations

∂t(α%) + ∇x · (α%u) = 0⇒ ‖%‖
Hk. ‖f ‖Hk+1 ,

∂t f + v ·∇x f + ∇v · (Γf ) = 0⇒ ‖f ‖
Hk. ‖%‖Hk+1 ,

⇒ ‖%‖
Hk. ‖%‖Hk+2 , ‖f ‖Hk. ‖f ‖Hk+2 .

Two way to overcome loss of regularity: system with diffusion ν∆u, system with
regularization: ∇xp → 〈∇xp〉.
No usual definition of weak solution in Lp :

∇v · (Γf ) = −∇xp(%, e) ·∇v f −∇v · ((v − u)f )

Numerics

Problem of the positivity of the volume fraction
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Main issues



We work on the barotropic system in 1D with periodic boundary conditions:

∂t(α%) + ∂x (α%u) = 0

∂t(α%u) + ∂x (α%u2) + α∂xp =

∫
R

(v − u)f dv

∂t f + v∂x f + ∂v (Γf ) = 0

α = 1−
∫

R
f dv

Γ = −∂xp − (v − u)

p(%) = %γ , γ > 1.

(1)

The system (1) can be rewritten as a system of conservation laws

∂t(α%) + ∂x (α%u) = 0

∂t

(
α%u +

∫
R
fv dv

)
+ ∂x

(
α%u2 + p(%) +

∫
R
v2f dv

)
= 0

∂t f + v∂x f + ∂v ((−∂xp + u)f − vf ) = 0

p(%) = %γ , γ > 1.

(2)

The fluid part of the system will be written as ∂tU + ∂xF(U, f ) = 0 with

U =

(
α%

α%u +
∫

R fv dv

)
and F(U, f ) =

(
α%u

α%u2 + p +
∫

R fv2 dv

)
.
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Numerics: Framework



Objective: Write a conservative scheme that preserves the positivity of the volume fraction
α(t, x) > 0.

The conservative form of the fluid part allow us to use classical hyperbolic scheme
(e.g : Rusanov, HLL...).

For the Vlasov equation, a possible choice is semi-Lagrangian method based on
polynomial interpolation.

We use here the splitting scheme:

1 Solve ∂tU + ∂xF(U, f ) = 0

2 Solve ∂t f + v∂x f = 0

3 Solve ∂t f + (u − ∂xp)∂v f = 0

4 Solve ∂t f − ∂v (vf ) = 0

CFL condition. Compute the eigenvalues of the fluid part:

λ± = u ±
√

p′(%)

α
, max(λ±)

∆t

∆x
≤

1

2
.
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The scheme



Recall the formula of the volume fraction

α(t, x) = 1−
∫

R
f (t, x , v)dv > 0

Problem: Solve the free transport equation with constraint
∂t f (t, x , v) + v∂x f (t, x , v) = 0

0 ≤
∫

R
f (t, x , v) dv < 1∫∫

T×R
f (t, x , v) dxdv =

∫∫
T×R

f0(x , v) dxdv

Strategy: Prediction-Correction scheme

After a Prediction step f̃ n+1(x , v) = f n(x −∆tv , v), do Correction step: project on a
set of admissible density f n+1(x , v) = P(f̃ n+1(x , v)) in a conservative way

The projection is made following ideas from the modelisation of crowd motion
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The maximum principle problem for the volume fraction



Figure: Random walk transporting the exceeding mass (Maury et al).

In a cell where the constraint is violated, do

1 Start a random walk from the cell transporting the exceeding mass

2 When the random walk encounters a cell where the density is admissible, get rid of a
much mass as it can

3 Continue until the exceeding mass is zero

Bertrand Maury, Aude Roudneff-Chupin, Filippo Santambrogio, Juliette Venel. Handling congestion in crowd motion
modeling. Networks and Heterogeneous Media, 2011, 6(3): 485-519. doi: 10.3934/nhm.2011.6.485
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Prediction-Correction type scheme: Correction phase



The Thick Sprays system without friction
∂t(α%) + ∇x · (α%u) = 0

∂t(α%u) + ∇x · (α%u ⊗ u) + α∇xp = 0

∂t f + v ·∇x f −∇xp(%) ·∇v f = 0

has similarity with the Vlasov-Poisson system
∂t f + v ·∇x f − E ·∇v f = 0,

−∆ϕ =

∫
R3

f dv − 1

E(t, x) = −∇xϕ(t, x)

What strongly differs is the regularity of the pressure vs the regularity of the electric
potential.

Some techniques used for linearized Vlasov-Poisson transfer to Thick Sprays equations.
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An analogy with plasma physics



f0(x , v) = (1 + ε cos(kx))e−v2/2
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Figure: Decay of acoustic energy for Thick Sprays
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Figure: Decay of electric field for Vlasov-Poisson
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Landau damping



Linearize the system without friction D? = 0 around %0(x) = cte, u0(x) = 0,

f 0(v) = e−v2/2 
%(t, x) = %0 +ε%1(t, x) +O(ε2)

u(t, x) = εu1(t, x) +O(ε2)

α(t, x) = α0 +εα1(t, x) +O(ε2)

f (t, x , v) = f 0 +εf1(t, x , v) +O(ε2)

Regrouping the linearized equations for τ1 = −%1

%2
0

, u1 and f1, one gets, setting the

constants to one 
∂tτ1 = ∂xu1 + ∂x

∫
R
vf1 dv

∂tu1 = ∂xτ1

∂t f1 + v∂x f1 − ∂v f 0∂xτ1 = 0
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An analogy with plasma physics: Landau Damping



For Landau damping in Vlasov-Poisson, it is well known that for a given k, the rate of
decay are given by the root in the complex plane of the dispersion function

DVP(ω, k) = 1−
1

k2

∫ +∞

−∞

∂v f 0(v)

v − ω
k

dv

Similar formal computation gives us a dispersion function for Thick Sprays

DTS(ω, k) = 1−
k2

ω2
+

k

ω

∫ +∞

−∞

v∂v f 0(v)

v − ω
k

dv
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Compute the rate of decay



Initial condition:

%(t = 0, x) = 1, u(t = 0, x) = 0, f (t = 0, x , v) =
1
√

2π
(1 + ε cos(kx))e−v2/2
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Figure: Decay of the acoustic energy, =(ω) = −0.13, <(ω) = 0.497
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Linear Damping, ε = 0.001, k = 0.5



Presentation of a conservative method to preserve maximum principle for the volume
fraction.

Landau damping phenomenon in the frictionless system.

Investigate the role of the friction.
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Conclusion



Adapt this method in the kinetic case: The constraint is not of the type a ≤ f (t, x) ≤ b
but a ≤

∫
R f (t, x , v)dv ≤ b. After the Prediction step f̃ n+1(x , v) = f n(x −∆tv , v), do

1 Start from a cell xi where α̃n+1
i < αmin

2 Compute the exceeding mass ∆m0
i . Modify the value, ∀j ,

f n+1
i,j =

1− αmin
4
3
πr3
?

f̃ n+1
i,j∑

k
∆vk f̃

n+1
i,k

, so that αn+1
i = αmin

3 Start a random walk (Sm), when the walk meet a cell Sm such that α̃n+1
Sm

> αmin, get
rid of as much mass as possible and modify

f n+1
Sm,j

= min

(∑
k

∆vk f̃
n+1
Sm,j

+ ∆m0
i ,

1− αmin
4
3
πr3
?

)
f̃ n+1
Sm,j∑

k
∆vk f̃

n+1
Sm,k

When all the exceeding mass has been distributed, the volume fraction αn+1
i is admissible.

Necessity to add a small minimum value αmin (e.g 10−3...) because α = 0 is not an
admissible value, can correspond to a close-packing limit.

Note that no convergence result of this algorithm is known
By construction, this method is conservative
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A method to recover the maximum principle
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