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Outline

1. Crash introduction to fusion and magnetically confined plasmas.
2. From Vlasov equation to the cold plasma model
3. The ordinary mode: it is not a singularity

4. Energy deposit at the eXtraordinary point: a regular singular point



Introduction m

Energy from nuclear fusion
Target reaction:

» Fusion research: Exploit nuclear fusion reactions
as a sustainable and clean energy source. D + T — He(3.5MeV) + n(14.1MeV).

» Fusion reaction requires

e density n (number of nuclei per unit volume),
e temperature T (kinetic energy of the nuclei),
e energy confinement time 7z (energy / power losses).

> At high temperatures, matter is ionized: plasma. D+ H — *He + 7,
» Plasma confinement: 3He + 3He — He + 2H.

Stars (p-p cycle):

H+H—-D+ect +ue,

gravitational

inertial _ magnetic

(M. Aschwanden, Physics of the Solar

https://lasers.linl.gov/science/icf
Corona, Praxis Pub. 2005) (http g ) (Max Planck IPP)
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Magnetically confined plasmas
Le livre de la Nature est écrit en langage mathématique (Galiléo Galilée)

» Charged particles in a magnetic field
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» Particle confinement ~ field-line confinement



Plasma heating and control

Wave beams for plasma heating and control m

Wave-particle resonances: M. Henderso ./ Fusion Engincering and Design 82 (2007) 454462
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System of equations (general)

Ofs + vs - Vaofs + g5 (E + vs X B/c) - V,fs = Cs({fo 1),
OE—cV xB= —47qus/ vs(p)fs(t, z,p)dp,
S ]R3

9B = —cV x E, (1)
V-B=0,

V-E= 471'25:(]5 /]R3 fs<taxap)dpa
1/2

relativistic velocity: vs = p/[msys(p)], With 7s(p) = (1 + p?/mc®) ™",
Cs : relativistic Landau collision operator
c: speed of light, ms: mass of particles of the species s, ¢s: electric charge.




System of equations (linearized) w

Externally imposed electric field E, given magnetic field By, of perturbation B.
System of partial differential equations for (fs, B) which reads

atfs + vs - szs + QS(US X BO/C) . vpfs = _QS(E+ Vs X B/C) . vas,Ov
8tB =—cV x F.

or, introducing gs = 0, f;

{atgs + vs - ngs + %(vs X BO/C) . Vpgs = _QS(atE —vs X V X E) . vas,07 (2)

OB =—cV x E.



The fluid model , m

Assume By = By(x1)es. Maxwellian Fy(p) = e 2*57, p = mu.

8tf+(’l)181 f+U282f+U383f)+Vf+€Bo($1)(’Ugapl U18p2)f (Slapl F0+826p2 F0+536p3F0).

Oe(v1f)+v1(v.Vy f)+vv f+eBo(z1)(0p, (Ulvzf)—if—apz (Wif) = —e[SVp(UlFo)—ESlFO]-
With j; = eno(21) [gs vif(t, 2z, v)dv, one gets

atjl(t,l’l) + fR3 vl(v.sz)dv + le(t,l’) - %m(ml)jg(t,l’l) = 6 2131 I]Rj S. V UlFo)d ]
+en° fR3 S1(t, z,v)Fo(p)dv].

Cold plasma model: strong hypothesis [ ~ e’ZkPBT, <v>=0,<v?>~kgT ~0.

EBO(xl)jQ(t,xl) — M

= thl(t,:cl) + le(t,xl) —
m meo

El (ta LU)
One deduces in a similar way

2
uja(t, 1) + via(t, 1) + L gy (1 2y) = <o) By (¢, ),

m

2
Duja(t, @1) + vjs(t, z1) = <0l By (¢, ).

meg



Ordinary mode (cyclotron frequency) m
_ eBo(z1) _ [e2no(z1)
Let we(my) = =572, wp(x1) = 4/ (cyclotron frequency and plasma frequency).

meqQ

j=eng(x1)v

moyv = e(FE + v x By)
VxB—c_QatE:,qu,VxE—FatB:O

Yields 9;j + we(w1)es x j + vj = (wp(x1))%e0E.

Tand for w = 0



Ordinary mode (cyclotron frequency) w
_ eBo(z1) _ [e2no(z1)
Let we(my) = =572, wp(x1) = 4/ (cyclotron frequency and plasma frequency).

meg

moyv = e(FE + v x By)
j=eno(z1)v
VXB—C*28tE:,u0j,V><E—|—8tB:O

Yields 9;j + we(w1)es x j + vj = (wp(x1))%e0E.

Exists a unique solution of this Cauchy problem without initial condition,

Tand for w = 0



Ordinary mode (cyclotron frequency) W

Let w.(x1) = 6307”&, wp(z1) = ,/M (cyclotron frequency and plasma frequency).

me

moyv = e(E + v X By)
j=eng(z1)v
V x B— ¢ 20,E = joj,V x E+8,B =

Yields 9;j + we(w1)es x j + vj = (wp(x1))%e0E.

Exists a unique solution of this Cauchy problem without initial condition, in S’ (R;).
After Fourier transform in time:

. (wp(m1))’e .
(iw + V)1 —we(@1)jz = (wp(@1))%e0 By B = S Gy Wel £ (W V) E)
(z:w + V)jz twe(z1)ji = (wp(z1))?e0E2 &< jo = %( weB1 + (iw + v)Es)
(iw +v)j3 = (wp(71))?e0 B3 (@)

J3 = twv E

Describes the conductivity operator:

j=o(z1,w)E.

Response of the plasma, matrix ¢ (z;,w) is singular when v — 0, for w = w.(z;)".

Tand for w = 0



Ordinary mode and eXtraordinary mode

Apparent singularity:

Proposition

At a point x§ such that w = w.(x5), the electric field (E1, E;) goes to a finite limit when
v — 0,.. No resonant heating at the cyclotron frequency.

Proof: it will come as a byproduct of the global system on E, B, j.

The resonant heating is obtained as a consequence of
Theorem
Let z! be the unique solution of w =  Jw?(x1) + w2(x1), assume 8,, (w2 + w?)(z}) # 0.

There is a resonant heating at z'!, that is [,(E.B)dx, — iQo when B — {z/'}.
Itis a consequence of B, ~ — .

T1—Ty




The extraordinary mode: hybrid mode m

Proof: After Fourier transform in time and Fourier transform in (z2, 23), replacing x; by «
ad using w, = w — iv

ikgEl - 8EE3 = iwung

6mE2 — Zszl = iwung

ikng — 6$H3 = j2 — iWSQEQ

ang — ik‘zHl = jg — iw€0E3

Lk‘gEg - Lk3E2 = ZwuoHl (3)
—iw, j3 = eowiFs

J1 —iweo 'y = ikoHy — ik3Ho

—iWwyJ1 + Wej2 = 5(1W5E1

—WeJ1 — Wy jo = :(,wf,Eg.




The subsystem of equations, in the plane (x1,z2) without derivatives is

jl —iw€0E1 = ik2H3 — il{igHQ
—iw, 1 Hwejz  —€owiB1 =0 (4)
—Wej1 —lWy 2 = eowp B
with, in addition
ikgEg - ik’gEQ . ik2H3 - ik'gHQ
Hl - .—7]3 - -
W Lo Wy

lts determinant is D, () = —iw,w?(z) — iw(w?(z) — w?), with

Dy(z) = fiw[wf)(a:) + w?(z) — ). (5)
Resulting system

d
Dy(@) U = My (2, ks, k3)U, U = (Es, Hy, By, H)"

As D, does not vanish at z = ¥, no singularity of the system. A turning point appears and
this does not lead to a singular solution.



Normal incidence k; = 0. The system becomes W

—0, B3 = iwpgHa

8wE2 - ik‘gEl = iw,ung
—0:H3 = jo —iweg B

Oy Hy —ikyHy = j3 — iwegEs,

with Hy = 2282 5, — —E2fls “and ji, jo, E1 expressed with Hz, E»>. Deduce the system on
(EQ, H3):
8zE2 — iszl = iw,ung
{ =0, H3 = jo —iwegFa,
and the system on (Es5, Hy) with H; as source term.
There exists Al,(zl), BV(Il), C’V(xl), such that A,,(IZ?l)DV(Il), Bl,(l‘l)Dy(Il), C,,(xl)Dl,(Il)
smooth and non zero in a neighborhood of =} (that is, for example, A, ~ —5)and

R
Ty

{ el = Al,(.%'l)&'()Eg + By(.’lﬁl)ikgHg,
Jo = —Cy(x1)eo B + A, (x1)iko Hs
Deduce

Hj
iw+ C,

A,
w+ C,

A2 + B,C, +iwB,
w+ C,

[ ]+ ( ) Hs = (iwpo — k3 )Hs. (6)



Treating the singularity in the ODE

Physics: only known a particular solution in the case (iw + Cp)~! =1 — - called the
Budden problem. '
Properties used here to address completely the general case:
1. Analyticity and there exists X, such that D, (X,) = 0 and X, = z/. (property of the
plasma)
2. D,(x)(A2 + B,C,) is bounded for (z,v) in a neighborhood V of (2%, 0) in C2. (result
of the calculus)

New unknown W = —f2__ ODE on W
(iw+Cy)2
W = (iwpo — k32t BeCtioBe) oy L YWt [(iw + C,) 3] (iw + C,) P W
(z—X,)! (z — X,)2.

Equation for the general problem

"o R, () 1
W _(x—Xl, _4(x—Xy)2)W 7




Model problem

Equation with frozen coefficients

2y

R.(X,)

dx? =

Scaling x — X, = kz;




Model problem

Equation with frozen coefficients

2y

R,(X,) 1
dz? ( B

x—X, 4z-X,)?

)Y.

Scaling x — X, = kz;
d*Y kR, (X)) 1
dz? z 422)

Choice xR, (X,) = —=. Equation becomes

N[

Y _ 11

dz2 ' 2z 422

)Y,

which solutions are



Model problem

Equation with frozen coefficients

2y

R,(X,) 1
dz? ( B

x—X, 4z-X,)?

)Y.

Scaling x — X, = kz;
d*Y kR, (X)) 1
dz? z 422)

Choice xR, (X,) = —=. Equation becomes

N[

Y _ 11

dz2 ' 2z 422

)Y,
which solutions are

Y(z) =z(AJo(Vz)+ BYy(V72))
= V2(AJo(VZ) + B[Yo(vz) — 2In 50o(v2)] + 22 In 500(1/2)).




Solution of (7) (the general problem) w

Construct an exact pair of solutions of the equation f” = [Rpg v) _ W + s(x)]f.

Want to use them for constructing solutions of W" = [f_gfz 4(3:_1XU)2]W.
Duhamel’s principle (variation of the constants).
Singular solution:

Y o ol Yo (Voo = 2 /o) In v/p(a).

As F is the derivative of Y, one gets the singularity of the solution of Maxwell’s equation
near a plasma, hence energy deposit across this singularity.



Stretching function W
Stretching function p(x). One has

s T
Lot = HY (o)) = A EL ) = (- Lyvi
Equation for the stretching function
o, Ru(X)) 1, RJ(X)) 1 | 1—4(z— X,)R,(z)
(W) L T aox, Iaex)e T, x—XV\/ R, O

Calculation of the stretching function: write p(z) = (v — X, )7(z) =

7_/

—=F _Xl/?
" P - X,.7)

with F' smooth in a neighborhood of X,. Existence and uniqueness of the solution such
that 7(X,) = 1 (on a line in the complex plane).
Define

Equation on f:

Ry(X)) 1 e
z—X, B 4($_Xy)2 +S(.’I,')]f’ S(SU) = p(x)i(

/I:[




Conclusions and remarks m

e In the study of the plasma heating, passing through the conductivity operator might not
be the most efficient method, the complete coupled system is better

o In this type of model, the transient solutions are not considered, because one uses a
Fourier transform

e The method of stretching function (~ 1950) amounts to solving (in wave propagation) the
eikonal equation and use the solution as a new variable

e The general set-up for the conductivity operator uses the 'response’ of the plasma as
well.

e Known: cold plasma model with oblique incidence in the non-uniform case, and singular
behavior of the general conductivity operator in the uniform case.



Thanks for the attention and again thanks to Pascal and SMAI for bridging the
Atlantic ocean!
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