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The classical Vlasov-Poisson

The Vlasov-Poisson system is a non-collisional kinetic equation which
models the evolution of a distribution f(t, x, v) of electrons in a plasma :

∂tf + v · ∇xf + E · ∇vf = 0 in (0, +∞) × Ω × Rd,

E = −∇U, ∆U = −ρ in (0, +∞) × Ω,

f |t=0 = f0 in Ω × Rd

with ρ(t, x) =
∫
Rd f dv the macroscopic density and Ω ⊆ Rd.
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The ionic Vlasov-Poisson model

If one wishes, instead, to model the evolution of ions in a plasma, then
one may use the ionic Vlasov-Poisson, also called Vlasov-Poisson for
massless electrons. This model derives from a coupled system. Let us
write f− the distribution of electrons and f+ the distribution of ions
and consider the following classical model for plasma dynamics:

∂tf− + v · ∇xf− + ∇xϕ · ∇vf− = Q(f−)
∂tf+ + v · ∇xf+ + ∇xϕ · ∇vf+ = 0
∆ϕ = ρ− − ρ+

with ρ± =
∫

f± dv and E = ∇xϕ is the total electric field generated by
both electrons and ions.
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The ionic Vlasov-Poisson model

The characteristic time-scale of the electrons Vlasov equation is
significantly shorter than that of the ions equations.
The Massless electron limit describes the asymptotic behaviour of the
system as the ratio of mass electron/ions grows small.
Formally, it comes down to assuming that, in the time-scale of the ions,
the electrons immediately reach the thermodynamical equilibrium of
their collisional kinetic equation, hence

f− → Ceϕ(x)e−|v|2/2

and the Poisson equation for the electric potential then becomes

∆ϕ = C̃eϕ(x) − ρ+.
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The ionic Vlasov-Poisson model

Writing f the distribution of ions, we get the Vlasov-Poisson for
Massless Electrons model:

∂tf + v · ∇xf + E · ∇vf = 0 in (0, +∞) × Ω × Rd,

E = −∇U, ∆U = eU − ρ − 1 in (0, +∞) × Ω,

f |t=0 = f0 in Ω × Rd

still with ρ(t, x) =
∫
Rd f dv and Ω ⊆ Rd.

Note that we have added a repulsive force, in the form of a "−1" in the
Poison equation, in order to ensure a good behaviour of the field in the
neighbourhood of ∂Ω. Moreover, this "−1" ensures that if ρ ≡ 0 then
U ≡ 0 is solution to the Poisson equation.
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Boundary conditions
Ω is a bounded strictly convex C2,1 domain. On the boundary we
consider the conditions :

▶ For the Vlasov equation: specular reflections

γ−f(t, x, v) = γ+f(t, x, v − 2(v · nx)nx) x ∈ ∂Ω, v · nx < 0

▶ For the Poisson equation, either homogeneous Dirichlet:

U(t, x) = 0 x ∈ ∂Ω

or Neumann conditions:

∇U · nx = h x ∈ ∂Ω

with h ∈ C1,µ(∂Ω) satisfying
∫

∂Ω h dσ = −1 for VP
and h < 0,

∫
∂Ω |h| dσ < 1 + |Ω| for VPME.
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Existence and uniqueness results

Vlasov-Poisson in bounded domains in R3, assuming the initial
condition is compactly supported and constant in a neighbourhood of
the grazing set:

▶ Half-space : Guo ’94, propagation of moments in the spirit of
Lions, Perthame (91)

▶ Half-space : Hwang, Velázquez ’09, Pfaffelmoser method
▶ Convex domain : Hwang, Velázquez ’10, local flattening of the C5

boundary of Ω.

Weak solutions in bounded domains: Alexandre ’93, Ben Abdallah ’94,
Weckler ’95, Mischler ’99, Fernández-Real ’18.
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Existence and uniqueness results

Vlasov-Poisson for Massless Electrons :
▶ R3 : Bouchut ’91, weak solutions for

f0 ∈ L∞(R3 × R3) ∩ P2(R3 × R3).
▶ R : Han-Kwan, Iacobelli ’17, weak solutions for f0 ∈ P1(T × R).
▶ T3 et R3 : Griffin-Pickering, Iacobelli ’21, ’21, strong solutions for

f0 ∈ P1(T × R) and uniqueness à la Loeper assuming bounded
density.
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Assumption on f0

For our existence result, we make the following assumptions on f0

▶
∫∫

Ω×R3
f0 dx dv = 1, f0 ≥ 0,

▶ f0 ∈ C1,µ(Ω̄ × R3), µ ∈ (0, 1),
▶ supp f0 ⊂⊂ Ω̄ × R3

▶ f0(x, v) = constante on a neighbourhood of γ0

with γ0 the grazing set in phase-space:

γ0 = {(x, v) ∈ ∂Ω × R3 : v · n(x) = 0}.
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Statement of our results

Theorem (C., Iacobelli)
Let Ω be a C2,1 strictly convex domain and f0 satisfying the previous
assumptions. There exists a unique classical solution

f ∈ C1
t C1,µ′((0, ∞) × Ω × R3), E ∈ C1

t C2,µ′((0, ∞) × Ω × R3)

for all µ′ ∈ (0, µ), to the Vlasov-Poisson system (classical or ionic) with
specular reflections on the boundary for the Vlasov equation, and either
homogenous Dirichlet or Neumann boundary condition for the Poisson
equation, with the proper compatibility assumption for the latter.
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Decoupled system

For all n ≥ 0 we consider fn
0 satisfying appropriate assumptions, E0 the

associated electric field and the system of equations for n ≥ 1:
∂tf

n + v · ∇xfn + En−1 · ∇vfn = 0

En(t, x) = −∇Un, ∆Un = eUn −
∫
Rd

fn dv − 1,

fn(0, x, v) = fn−1
0 (x, v)

with specular reflections for Vlasov, and either Dirichlet or Neumann
for Poisson.
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Solution to the Vlasov equation

Proposition
Consider E ∈ C0

t C1,µ([0, T ] × Ω̄)d, µ ∈ (0, 1] such that
E(t, x) · n(x) ≥ C0 > 0 for all x ∈ ∂Ω. Then, under the previous
assumptions, there exists a unique solution f ∈ C1

t C1,µ([0, T ] × Ω × Rd)
to 

∂tf + v · ∇xf + E · ∇vf = 0 (t, x, v) ∈ (0, T ] × Ω̄ × Rd,

γ−f(t, x, v) = γ+f(t, x, Rxv) (t, x, v) ∈ (0, T ] × γ−,

f |t=0 = f0 Ω × Rd.
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Simulations

Figure: Choice of density ρ and associated field E
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Simulations

Figure: Trajectory in the disk from x = (−0.9, 0), v ∝ (−0.2, 1) and evolution
of speed
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Simulations

Figure: Examples of trajectories on the disk
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Velocity Lemma

In order to construct a classical solution to the Vlasov equation, we
construct the flow of transport and propagate the initial condition
along that flow. The trajectories of the particles at time s,
(Xs, Vs) = (X(s; t, x, v), V (s; t, x, v)) is solution to

∂sXs = Vs X(t; t, x, v) = x,

∂sVs = E(s, Xs) V (t; t, x, v) = v,

Vs+ = Vs− − 2(n(Xτ ) · Vs−)n(Xs) for all s such that Xs ∈ ∂Ω.

Since we assumed E ∈ C0
t C1,µ([0, T ] × Ω̄)d the trajectory is well defined

in-between reflections on the boundary. Therefore we can construct the
full trajectory piece by piece if there are only a finite number of
reflections happening in a finite time interval [s, t].
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Velocity Lemma

Lemma (Velocity Lemma)
Under the assumptions of the theorem, we define

α(t, x, v) = 1
2

(v · ∇ξ(x))2 +
(
v · ∇2ξ(x) · v + E(t, x) · ∇ξ(x)

)
|ξ(x)|.

There exists δ > 0 such that α is a δ−kinetic distance.
The grazing set is isolated in the sense that for all (t, x, v) with
dist(x, ∂Ω) < δ

C−
s α(t, x, v) ≤ α(s, X(s; t, x, v), V (s; t, x, v)) ≤ C+

s α(t, x, v)

with C±
s = exp

(
± C0

[
(|v| + 1)|s − t| + ∥E∥L∞(s − t)2])

,
C0 = C0(∥ξ∥C2,1 , ∥E∥C0,1) when Ω is strictly convex.
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Control of the number of reflections

From the Velocity Lemma, we deduce for all (t, x, v) the number k of
reflections of the trajectory s → (X(s; t, x, v), V (s; t, x, v)) on the
boundary in the interval of time s ∈ (t − ∆, t) is bounded by

k ≤ ∆C1
(|v| + ∆∥E∥L∞)2 + ∥E∥L∞√

α(t, x, v)
eC0[(|v|+1)∆+∥E∥L∞ ∆2]

with C1 = C1(Ω) > 0.
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Simulations

Figure: Examples of trajectories on the disk
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Simulations

Figure: Kinetic distances as functions of s
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The Dirichlet case

Proposition
Consider ρ ∈ C0,α(Ω), α ∈ (0, 1). The non-linear Poisson equation{

∆U = eU − ρ − 1 x ∈ Ω
U(x) = 0 x ∈ ∂Ω.

has a unique solution U ∈ H1
0 (Ω). Moreover, this solution is C2,α(Ω)

and satisfies ∂nU(x) < 0 for all x ∈ ∂Ω.
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Elements of proof

▶ Existence and uniqueness in H1
0 (Ω) : we show that there exists a

unique minimiser in H1
0 of the functional

ED[ϕ] :=
∫

Ω

(1
2

|∇ϕ|2 + eϕ − ϕ − ρϕ

)
dx

▶ Regularity : we adapt the method of Griffin-Pickering-Iacobelli to
the bounded domain case : we decompose U in a regular part Û
and a singular part Ū solutions to∆Û = eŪ+Û − 1

Û |∂Ω = 0

{
∆Ū = −ρ

Ū |∂Ω = 0.

For Ū , classical elliptic regularity : Ū ∈ C2,α
c (Ω̄).
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Elements of proof

We identify Û as the unique minimiser in H1
0 (Ω) of

ÊD[ϕ] :=
∫

Ω

(1
2

|∇ϕ|2 + eŪ+ϕ − ϕ

)
dx.

We use the fact that Ū is uniformly bounded i.e. there exists M1 > 0
such that −M1 < Ū < M1, and the fact that Û minimises ÊD to show
that for all k ∈ N :

∥eÛ ∥k
Lk(Ω) ≤ C0

∫
Ω

e(k−1)Û dx ≤ · · · ≤ Ck−1
0 ∥eÛ ∥L1(Ω) ≤ C(Ω)Ck

0

with C0 = (1 + eM1)eM1 . The regularity of Û and U then follows from
classical elliptic regularity and Sobolev embeddings.
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Convergence of sequences

Let us introduce

Qn(t) = sup{|v| : (x, v) ∈ supp fn(s), 0 ≤ s ≤ t}

and assume there exists K = K(T ) such that for all t ∈ (0, T ) et n ≥ 1 :
Qn(t) ≤ K.

Proposition (Hölder compactness)
Under the assumptions above, the sequences fn and En converge in
Cν

t C1,µ′([0, T ] × Ω × Rd) and Cν
t C2,µ′([0, T ] × Ω)d for all ν < 1, µ′ < µ

towards f and E. Moreover, these limits are C1
t C1,µ′([0, T ] × Ω × Rd)

and C1
t C2,µ′([0, T ] × Ω)d respectively and they are solutions to VPME.

Idea of proof: compact velocity support + propagation of L∞-norm of f
⇒ uniform bound on ρ ⇒ uniform bound on E. Regularity by iteration.
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Bounds on the velocities in 3d

To remove the assumption of bounded velocity support, the key is to
control the acceleration along the trajectories of the particles.
Indeed, since we assume supp f0 ⊂⊂ Ω̄ × Rd, if the acceleration is
controlled then, at all times, the velocities will be bounded. We show
this for the solution (f, E) of the non-linear Vlasov-Poisson system that
we obtained above, and we conclude using the convergence of the flow
of transport of the approximate problem.
For a given trajectory (X̂(s), V̂ (s)) we are interested in the quantity∫ t

t−∆
|E(s, X̂(s))| ds ≤

∫ t

t−∆

∫∫
Ω×R3

f(s, y, w)
|y − X̂(s)|2

dy dw ds + C∆∥h∥L∞

≤
∫ t

t−∆

∫∫
Ω×R3

f(t, x, v)
|X(s; t, x, v) − X̂(s)|2

dx dv ds + C∆∥h∥L∞ .
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Conclusion

We have thus proved existence of solutions to VPME on [0, T ].
We then show that we can take T → ∞ while preserving the bound on
the velocities to obtain the global solutions.
Finally, we prove uniqueness by adapting the idea of Lions-Perthame
(’91) : consider two solutions f1 and f2, they satisfy

∂t(f1 − f2) + v · ∇x(f1 − f2) + E1 · ∇v(f1 − f2) = (E1 − E2) · ∇vf2

which we interpret as a Vlasov equation, driven by the flow of transport
associated to E1, and we control the right-hand-side by estimations on
the Poisson kernel to get

∥(f1 − f2)(t)∥L1(Ω×R3) ≤ C(T )
∫ t

0
∥(f1 − f2)(s)∥L1(Ω×R3) ds.
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Thank you for listening !
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