Solutions classiques pour des équations de type Vlasov-Poisson en domaine borné

joint work with M. Iacobelli

Ludovic Cesbron
Biennale Française des Mathématiques Appliquées et Industrielles SMAI
22-26 Mai 2023

Introduction

The Vlasov-Poisson models
Boundary conditions
Existence and uniqueness results
Our assumptions and theorems

Outline of the proof
Decoupling the equations
Vlasov equation
Poisson equation
Compactness with bounded velocities
Bounds on the velocities in 3d

The classical Vlasov-Poisson

The Vlasov-Poisson system is a non-collisional kinetic equation which models the evolution of a distribution $f(t, x, v)$ of electrons in a plasma :

$$
\left\{\begin{array}{lr}
\partial_{t} f+v \cdot \nabla_{x} f+E \cdot \nabla_{v} f=0 & \text { in }(0,+\infty) \times \Omega \times \mathbb{R}^{d}, \\
E=-\nabla U, \quad \Delta U=-\rho & \text { in }(0,+\infty) \times \Omega \\
\left.f\right|_{t=0}=f_{0} & \text { in } \Omega \times \mathbb{R}^{d}
\end{array}\right.
$$

with $\rho(t, x)=\int_{\mathbb{R}^{d}} f \mathrm{~d} v$ the macroscopic density and $\Omega \subseteq \mathbb{R}^{d}$.

The ionic Vlasov-Poisson model

If one wishes, instead, to model the evolution of ions in a plasma, then one may use the ionic Vlasov-Poisson, also called Vlasov-Poisson for massless electrons. This model derives from a coupled system. Let us write f_{-}the distribution of electrons and f_{+}the distribution of ions and consider the following classical model for plasma dynamics:

$$
\left\{\begin{array}{l}
\partial_{t} f_{-}+v \cdot \nabla_{x} f_{-}+\nabla_{x} \phi \cdot \nabla_{v} f_{-}=Q\left(f_{-}\right) \\
\partial_{t} f_{+}+v \cdot \nabla_{x} f_{+}+\nabla_{x} \phi \cdot \nabla_{v} f_{+}=0 \\
\Delta \phi=\rho_{-}-\rho_{+}
\end{array}\right.
$$

with $\rho_{ \pm}=\int f_{ \pm} \mathrm{d} v$ and $E=\nabla_{x} \phi$ is the total electric field generated by both electrons and ions.

The ionic Vlasov-Poisson model

The characteristic time-scale of the electrons Vlasov equation is significantly shorter than that of the ions equations.
The Massless electron limit describes the asymptotic behaviour of the system as the ratio of mass electron/ions grows small.
Formally, it comes down to assuming that, in the time-scale of the ions, the electrons immediately reach the thermodynamical equilibrium of their collisional kinetic equation, hence

$$
f_{-} \rightarrow C e^{\phi(x)} e^{-|v|^{2} / 2}
$$

and the Poisson equation for the electric potential then becomes

$$
\Delta \phi=\tilde{C} e^{\phi(x)}-\rho_{+} .
$$

The ionic Vlasov-Poisson model

Writing f the distribution of ions, we get the Vlasov-Poisson for Massless Electrons model:

$$
\left\{\begin{array}{lr}
\partial_{t} f+v \cdot \nabla_{x} f+E \cdot \nabla_{v} f=0 & \text { in }(0,+\infty) \times \Omega \times \mathbb{R}^{d}, \\
E=-\nabla U, \quad \Delta U=e^{U}-\rho-1 & \text { in }(0,+\infty) \times \Omega \\
\left.f\right|_{t=0}=f_{0} & \text { in } \Omega \times \mathbb{R}^{d}
\end{array}\right.
$$

still with $\rho(t, x)=\int_{\mathbb{R}^{d}} f \mathrm{~d} v$ and $\Omega \subseteq \mathbb{R}^{d}$.
Note that we have added a repulsive force, in the form of a " -1 " in the Poison equation, in order to ensure a good behaviour of the field in the neighbourhood of $\partial \Omega$. Moreover, this " -1 " ensures that if $\rho \equiv 0$ then $U \equiv 0$ is solution to the Poisson equation.

Boundary conditions

Ω is a bounded strictly convex $C^{2,1}$ domain. On the boundary we consider the conditions :

- For the Vlasov equation: specular reflections

$$
\gamma_{-} f(t, x, v)=\gamma_{+} f\left(t, x, v-2\left(v \cdot n_{x}\right) n_{x}\right) \quad x \in \partial \Omega, v \cdot n_{x}<0
$$

- For the Poisson equation, either homogeneous Dirichlet:

$$
U(t, x)=0 \quad x \in \partial \Omega
$$

or Neumann conditions:

$$
\nabla U \cdot n_{x}=h \quad x \in \partial \Omega
$$

with $h \in C^{1, \mu}(\partial \Omega)$ satisfying $\int_{\partial \Omega} h \mathrm{~d} \sigma=-1$ for VP and $h<0, \int_{\partial \Omega}|h| \mathrm{d} \sigma<1+|\Omega|$ for VPME.

Introduction

The Vlasov-Poisson models
Boundary conditions
Existence and uniqueness results
Our assumptions and theorems

Outline of the proof
Decoupling the equations
Vlasov equation
Poisson equation
Compactness with bounded velocities
Bounds on the velocities in 3d

Existence and uniqueness results

Vlasov-Poisson in bounded domains in \mathbb{R}^{3}, assuming the initial condition is compactly supported and constant in a neighbourhood of the grazing set:

- Half-space : Guo '94, propagation of moments in the spirit of Lions, Perthame (91)
- Half-space : Hwang, Velázquez '09, Pfaffelmoser method
- Convex domain : Hwang, Velázquez '10, local flattening of the C^{5} boundary of Ω.

Weak solutions in bounded domains: Alexandre '93, Ben Abdallah '94, Weckler '95, Mischler '99, Fernández-Real '18.

Existence and uniqueness results

Vlasov-Poisson for Massless Electrons :

- \mathbb{R}^{3} : Bouchut '91, weak solutions for $f_{0} \in L^{\infty}\left(\mathbb{R}^{3} \times \mathbb{R}^{3}\right) \cap \mathcal{P}_{2}\left(\mathbb{R}^{3} \times \mathbb{R}^{3}\right)$.
- \mathbb{R} : Han-Kwan, Iacobelli ' 17 , weak solutions for $f_{0} \in \mathcal{P}_{1}(\mathbb{T} \times \mathbb{R})$.
$\checkmark \mathbb{T}^{3}$ et \mathbb{R}^{3} : Griffin-Pickering, Iacobelli ' $21,{ }^{\prime} 21$, strong solutions for $f_{0} \in \mathcal{P}_{1}(\mathbb{T} \times \mathbb{R})$ and uniqueness à la Loeper assuming bounded density.

Introduction

The Vlasov-Poisson models
Boundary conditions
Existence and uniqueness results
Our assumptions and theorems

Outline of the proof
Decoupling the equations
Vlasov equation
Poisson equation
Compactness with bounded velocities
Bounds on the velocities in 3d

Assumption on f_{0}

For our existence result, we make the following assumptions on f_{0}
$\Rightarrow \iint_{\Omega \times \mathbb{R}^{3}} f_{0} \mathrm{~d} x \mathrm{~d} v=1, f_{0} \geq 0$,

- $f_{0} \in C^{1, \mu}\left(\bar{\Omega} \times \mathbb{R}^{3}\right), \mu \in(0,1)$,
- $\operatorname{supp} f_{0} \subset \subset \bar{\Omega} \times \mathbb{R}^{3}$
- $f_{0}(x, v)=$ constante on a neighbourhood of γ_{0}
with γ_{0} the grazing set in phase-space:

$$
\gamma_{0}=\left\{(x, v) \in \partial \Omega \times \mathbb{R}^{3}: v \cdot n(x)=0\right\}
$$

Statement of our results

Theorem (C., Iacobelli)

Let Ω be a $C^{2,1}$ strictly convex domain and f_{0} satisfying the previous assumptions. There exists a unique classical solution

$$
f \in C_{t}^{1} C^{1, \mu^{\prime}}\left((0, \infty) \times \Omega \times \mathbb{R}^{3}\right), \quad E \in C_{t}^{1} C^{2, \mu^{\prime}}\left((0, \infty) \times \Omega \times \mathbb{R}^{3}\right)
$$

for all $\mu^{\prime} \in(0, \mu)$, to the Vlasov-Poisson system (classical or ionic) with specular reflections on the boundary for the Vlasov equation, and either homogenous Dirichlet or Neumann boundary condition for the Poisson equation, with the proper compatibility assumption for the latter.

The Vlasov-Poisson models
Boundary conditions
Existence and uniqueness results
Our assumptions and theorems

Outline of the proof
Decoupling the equations
Vlasov equation
Poisson equation
Compactness with bounded velocities
Bounds on the velocities in 3d

Decoupled system

For all $n \geq 0$ we consider f_{0}^{n} satisfying appropriate assumptions, E^{0} the associated electric field and the system of equations for $n \geq 1$:

$$
\left\{\begin{array}{l}
\partial_{t} f^{n}+v \cdot \nabla_{x} f^{n}+E^{n-1} \cdot \nabla_{v} f^{n}=0 \\
E^{n}(t, x)=-\nabla U^{n}, \quad \Delta U^{n}=e^{U^{n}}-\int_{\mathbb{R}^{d}} f^{n} \mathrm{~d} v-1, \\
f^{n}(0, x, v)=f_{0}^{n-1}(x, v)
\end{array}\right.
$$

with specular reflections for Vlasov, and either Dirichlet or Neumann for Poisson.

Solution to the Vlasov equation

Proposition

Consider $E \in C_{t}^{0} C^{1, \mu}([0, T] \times \bar{\Omega})^{d}, \mu \in(0,1]$ such that $E(t, x) \cdot n(x) \geq C_{0}>0$ for all $x \in \partial \Omega$. Then, under the previous assumptions, there exists a unique solution $f \in C_{t}^{1} C^{1, \mu}\left([0, T] \times \Omega \times \mathbb{R}^{d}\right)$ to

$$
\left\{\begin{array}{lr}
\partial_{t} f+v \cdot \nabla_{x} f+E \cdot \nabla_{v} f=0 & (t, x, v) \in(0, T] \times \bar{\Omega} \times \mathbb{R}^{d} \\
\gamma_{-} f(t, x, v)=\gamma_{+} f\left(t, x, \mathcal{R}_{x} v\right) & (t, x, v) \in(0, T] \times \gamma_{-}, \\
\left.f\right|_{t=0}=f_{0} & \Omega \times \mathbb{R}^{d} .
\end{array}\right.
$$

Simulations

Figure: Choice of density ρ and associated field E

Simulations

Figure: Trajectory in the disk from $x=(-0.9,0), v \propto(-0.2,1)$ and evolution of speed

Simulations

Figure: Examples of trajectories on the disk

Velocity Lemma

In order to construct a classical solution to the Vlasov equation, we construct the flow of transport and propagate the initial condition along that flow. The trajectories of the particles at time s, $\left(X_{s}, V_{s}\right)=(X(s ; t, x, v), V(s ; t, x, v))$ is solution to

$$
\left\{\begin{array}{lr}
\partial_{s} X_{s}=V_{s} & X(t ; t, x, v)=x \\
\partial_{s} V_{s}=E\left(s, X_{s}\right) & V(t ; t, x, v)=v \\
V_{s^{+}}=V_{s^{-}}-2\left(n\left(X_{\tau}\right) \cdot V_{s^{-}}\right) n\left(X_{s}\right) & \text { for all } s \text { such that } X_{s} \in \partial \Omega
\end{array}\right.
$$

Since we assumed $E \in C_{t}^{0} C^{1, \mu}([0, T] \times \bar{\Omega})^{d}$ the trajectory is well defined in-between reflections on the boundary. Therefore we can construct the full trajectory piece by piece if there are only a finite number of reflections happening in a finite time interval $[s, t]$.

Velocity Lemma

Lemma (Velocity Lemma)

Under the assumptions of the theorem, we define

$$
\alpha(t, x, v)=\frac{1}{2}(v \cdot \nabla \xi(x))^{2}+\left(v \cdot \nabla^{2} \xi(x) \cdot v+E(t, x) \cdot \nabla \xi(x)\right)|\xi(x)| .
$$

There exists $\delta>0$ such that α is a δ-kinetic distance.
The grazing set is isolated in the sense that for all (t, x, v) with $\operatorname{dist}(x, \partial \Omega)<\delta$

$$
C_{s}^{-} \alpha(t, x, v) \leq \alpha(s, X(s ; t, x, v), V(s ; t, x, v)) \leq C_{s}^{+} \alpha(t, x, v)
$$

with $C_{s}^{ \pm}=\exp \left(\pm C_{0}\left[(|v|+1)|s-t|+\|E\|_{L^{\infty}}(s-t)^{2}\right]\right)$,
$C_{0}=C_{0}\left(\|\xi\|_{C^{2,1}},\|E\|_{C^{0,1}}\right)$ when Ω is strictly convex.

Control of the number of reflections

From the Velocity Lemma, we deduce for all (t, x, v) the number k of reflections of the trajectory $s \rightarrow(X(s ; t, x, v), V(s ; t, x, v))$ on the boundary in the interval of time $s \in(t-\Delta, t)$ is bounded by

$$
k \leq \Delta C_{1} \frac{\left(|v|+\Delta\|E\|_{L^{\infty}}\right)^{2}+\|E\|_{L^{\infty}}}{\sqrt{\alpha(t, x, v)}} e^{C_{0}\left[(|v|+1) \Delta+\|E\|_{L^{\infty}} \Delta^{2}\right]}
$$

with $C_{1}=C_{1}(\Omega)>0$.

Simulations

Figure: Examples of trajectories on the disk

Simulations

Figure: Kinetic distances as functions of s

Introduction

The Vlasov-Poisson models
Boundary conditions
Existence and uniqueness results
Our assumptions and theorems

Outline of the proof
Decoupling the equations
Vlasov equation

Poisson equation

Compactness with bounded velocities
Bounds on the velocities in 3d

The Dirichlet case

Proposition

Consider $\rho \in C^{0, \alpha}(\Omega), \alpha \in(0,1)$. The non-linear Poisson equation

$$
\left\{\begin{array}{lr}
\Delta U=e^{U}-\rho-1 & x \in \Omega \\
U(x)=0 & x \in \partial \Omega
\end{array}\right.
$$

has a unique solution $U \in H_{0}^{1}(\Omega)$. Moreover, this solution is $C^{2, \alpha}(\Omega)$ and satisfies $\partial_{n} U(x)<0$ for all $x \in \partial \Omega$.

Elements of proof

- Existence and uniqueness in $H_{0}^{1}(\Omega)$: we show that there exists a unique minimiser in H_{0}^{1} of the functional

$$
\mathcal{E}_{D}[\phi]:=\int_{\Omega}\left(\frac{1}{2}|\nabla \phi|^{2}+e^{\phi}-\phi-\rho \phi\right) \mathrm{d} x
$$

- Regularity : we adapt the method of Griffin-Pickering-Iacobelli to the bounded domain case : we decompose U in a regular part \hat{U} and a singular part \bar{U} solutions to

$$
\left\{\begin{array} { l }
{ \Delta \hat { U } = e ^ { \overline { U } + \hat { U } } - 1 } \\
{ \hat { U } | _ { \partial \Omega } = 0 }
\end{array} \quad \left\{\begin{array}{l}
\Delta \bar{U}=-\rho \\
\left.\bar{U}\right|_{\partial \Omega}=0
\end{array}\right.\right.
$$

For \bar{U}, classical elliptic regularity : $\bar{U} \in C_{c}^{2, \alpha}(\bar{\Omega})$.

Elements of proof

We identify \hat{U} as the unique minimiser in $H_{0}^{1}(\Omega)$ of

$$
\hat{\mathcal{E}}_{D}[\phi]:=\int_{\Omega}\left(\frac{1}{2}|\nabla \phi|^{2}+e^{\bar{U}+\phi}-\phi\right) \mathrm{d} x .
$$

We use the fact that \bar{U} is uniformly bounded i.e. there exists $M_{1}>0$ such that $-M_{1}<\bar{U}<M_{1}$, and the fact that \hat{U} minimises $\hat{\mathcal{E}}_{D}$ to show that for all $k \in \mathbb{N}$:

$$
\left\|e^{\hat{U}}\right\|_{L^{k}(\Omega)}^{k} \leq C_{0} \int_{\Omega} e^{(k-1) \hat{U}} \mathrm{~d} x \leq \cdots \leq C_{0}^{k-1}\left\|e^{\hat{U}}\right\|_{L^{1}(\Omega)} \leq C(\Omega) C_{0}^{k}
$$

with $C_{0}=\left(1+e^{M_{1}}\right) e^{M_{1}}$. The regularity of \hat{U} and U then follows from classical elliptic regularity and Sobolev embeddings.

Introduction

The Vlasov-Poisson models
Boundary conditions
Existence and uniqueness results
Our assumptions and theorems

Outline of the proof
Decoupling the equations
Vlasov equation
Poisson equation
Compactness with bounded velocities
Bounds on the velocities in 3d

Convergence of sequences

Let us introduce

$$
Q^{n}(t)=\sup \left\{|v|:(x, v) \in \operatorname{supp} f^{n}(s), 0 \leq s \leq t\right\}
$$

and assume there exists $K=K(T)$ such that for all $t \in(0, T)$ et $n \geq 1$: $Q^{n}(t) \leq K$.

Proposition (Hölder compactness)

Under the assumptions above, the sequences f^{n} and E^{n} converge in $C_{t}^{\nu} C^{1, \mu^{\prime}}\left([0, T] \times \Omega \times \mathbb{R}^{d}\right)$ and $C_{t}^{\nu} C^{2, \mu^{\prime}}([0, T] \times \Omega)^{d}$ for all $\nu<1, \mu^{\prime}<\mu$ towards f and E. Moreover, these limits are $C_{t}^{1} C^{1, \mu^{\prime}}\left([0, T] \times \Omega \times \mathbb{R}^{d}\right)$ and $C_{t}^{1} C^{2, \mu^{\prime}}([0, T] \times \Omega)^{d}$ respectively and they are solutions to VPME.

Idea of proof: compact velocity support + propagation of L^{∞}-norm of f \Rightarrow uniform bound on $\rho \Rightarrow$ uniform bound on E. Regularity by iteration.

Bounds on the velocities in 3d

To remove the assumption of bounded velocity support, the key is to control the acceleration along the trajectories of the particles. Indeed, since we assume supp $f_{0} \subset \subset \bar{\Omega} \times \mathbb{R}^{d}$, if the acceleration is controlled then, at all times, the velocities will be bounded. We show this for the solution (f, E) of the non-linear Vlasov-Poisson system that we obtained above, and we conclude using the convergence of the flow of transport of the approximate problem. For a given trajectory $(\hat{X}(s), \hat{V}(s))$ we are interested in the quantity

$$
\begin{gathered}
\int_{t-\Delta}^{t}|E(s, \hat{X}(s))| \mathrm{d} s \leq \int_{t-\Delta}^{t} \iint_{\Omega \times \mathbb{R}^{3}} \frac{f(s, y, w)}{|y-\hat{X}(s)|^{2}} \mathrm{~d} y \mathrm{~d} w \mathrm{~d} s+C \Delta\|h\|_{L^{\infty}} \\
\quad \leq \int_{t-\Delta}^{t} \iint_{\Omega \times \mathbb{R}^{3}} \frac{f(t, x, v)}{|X(s ; t, x, v)-\hat{X}(s)|^{2}} \mathrm{~d} x \mathrm{~d} v \mathrm{~d} s+C \Delta\|h\|_{L^{\infty}}
\end{gathered}
$$

Conclusion

We have thus proved existence of solutions to VPME on $[0, T]$.
We then show that we can take $T \rightarrow \infty$ while preserving the bound on the velocities to obtain the global solutions.
Finally, we prove uniqueness by adapting the idea of Lions-Perthame ('91) : consider two solutions f_{1} and f_{2}, they satisfy

$$
\partial_{t}\left(f^{1}-f^{2}\right)+v \cdot \nabla_{x}\left(f^{1}-f^{2}\right)+E^{1} \cdot \nabla_{v}\left(f^{1}-f^{2}\right)=\left(E^{1}-E^{2}\right) \cdot \nabla_{v} f^{2}
$$

which we interpret as a Vlasov equation, driven by the flow of transport associated to E^{1}, and we control the right-hand-side by estimations on the Poisson kernel to get

$$
\left\|\left(f^{1}-f^{2}\right)(t)\right\|_{L^{1}\left(\Omega \times \mathbb{R}^{3}\right)} \leq C(T) \int_{0}^{t}\left\|\left(f^{1}-f^{2}\right)(s)\right\|_{L^{1}\left(\Omega \times \mathbb{R}^{3}\right)} \mathrm{d} s
$$

Thank you for listening !
C) UNIVERSITÉ

